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ABSTRACT
The Development and Validation of a Model for

the Spatial Distribution of Snowmelt Based on

Topography and Point Melt Measurements

by

Kevin Scott Williams, Master of Science
Utah State University, 1998

Major Professor: Dr. David Tarboton
Department: Civil and Environmental Engineering

Because of the crucial role snowmelt plays in many watersheds
around the world, it is important to understand and accurately quantify the
melt process. As such, numerous mathematical models attempting to
describe and predict snowmelt have arisen. There are two main categories of
models: conceptual index models and more intricate energy balance models.
The index models, like the degree-day or radiation index models, are simple
and practical enough for use in large basins for operational purposes.
Energy balance models, on the other hand, are generally more complicated
and require large amounts of data, but they are able to represent the physics

behind melt and give more accurate representations of the spatial



iii
distribution of melt within small research basins.

The TopoFECS model (Topographically Factorized Energy
Component Snowmelt model) presented here attempts to bridge the gap
between these two extremes by providing a simple yet physically justifiable
method that uses elevation and radiation indices together with some
measurements to distribute melt over a watershed. This new model
separates the energy that causes snowmelt into three components: a spatially
uniform component, a component that is proportional to elevation, and one
that is proportional to solar illumination (which is determined by
topography). Measurements of snowmelt at several topographically unique
points in a watershed allow the melt energy to be factored into its
components and then adjusted to estimate the spatial distribution of melt
over the whole watershed. Model results using synthetically generated data
as well as real data are presented. Results from an analysis of the effects of
using different time scales, spatial scales, sampling data, and weather
conditions with the model are also presented. Finally, practical guidelines
and recommendations for using the model are given.

(132 pages)
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CHAPTERI

INTRODUCTION

Snow plays a crucial role in the hydrology of the United States as well
as in many other parts of the world. In the western United States,
approximately 75% of the total water budget comes from snowmelt
(McManamon, Day, and Carroll, 1993), and many regions of the world rely
even more heavily on snowmelt for their annual water supply. As such,
snow science has been an active field of research since the turn of the
century, with attention focused primarily on the practical considerations of
snow as a water resource and as an avalanche danger (Colbeck, 1987). In the
more recent part of the century, computers have been employed to model
the complex physical processes that occur in snow and to make usable
estimations concerning the state of the snowpack.

Of particular interest to hydrologists is the timing and magnitude of
melt water fluxes from snow. To this end, numerous models have been
suggested and implemented, ranging from simple temperature index melt
models to detailed, physically based models that attempt to accurately
represent all of the physical dynamics of snow accumulation,
metamorphism, and melt.

In actual engineering practice, the simpler index models are generally

chosen for most jobs. These models have very simple data requirements



(usually just a temperature reading, or perhaps measurements of net
radiation), and are straightforward to implement. They produce somewhat
reasonable results when well calibrated against prior data for a particular
basin, and they are very computationally efficient. One such model, the
Snowmelt Runoff Model, or SRM (Martinec, Rango, and Roberts 1994), has
seen a lot of use in practical real-time snowmelt predictions. Though the
model is a simple degree-day model, it has met with large success primarily
due to its inclusion of real-time knowledge of the snowpack, e.g., snow-
covered area (Rango and van Katwijk, 1990).

Others have tried to incorporate the significant effect of solar
radiation along with air temperature index models to produce more
physically realistic results. Several scientists, including Riley, Chadwick, and
Bagley (1966), Cazorzi and Dalla-Fontana (1996), and Brubaker, Rango, and
Kustas (1996), have presented melt models that combine air temperature
with a radiation index. These models seem to provide an improvement in
the spatial distribution of melt estimates over simple temperature-index
methods, but they are more difficult to implement because of the need for an
additional measurement of solar radiation.

These simpler index models for snowmelt are very practical for
general applications where the user merely needs to know the quantity of

runoff expected to appear in the river below. However, they lack sufficient



physical basis for many purposes. For instance, a simple lumped index
model can give spurious predictions for runoff when the basin is subjected to
climatic conditions that are outside of what the model was calibrated for
(Martinec and Rango, 1986). Since index models generally do not consider
the spatial patterns of melt, they cannot give reasonable inputs to other
spatially explicit models to solve more complicated problems such as
modeling contaminant transport, deciding the effects of land use change,
modeling erosion, and determining the effects of climate alteration.

For these more complicated tasks, numerous detailed energy-balance
models have been developed (Anderson, 1976; Flerchinger, 1987; Jordan,
1991; Tarboton, 1994; Tarboton, Chowdhury, and Jackson, 1995; Tarboton
and Luce, 1996). These physically based models generally do a much better
job of estimating melt at a point than do simpler index models. These
models can also be used to simulate melt at a larger scale by dividing the
area to be modeled into smaller hydrologic units and running the model
again at each different unit. This provides a relatively good spatial
representation of melt. However, a drawback to this type of model is that it
is generally very data-intensive, requiring either much meteorological
instrumentation at the point to be modeled, or interpolation and
extrapolation from nearby measurement sites, introducing further

uncertainty. These models also generally employ many different parameters



that need calibration and may even vary throughout the melt season.
Finally, these models can be very computationally intensive, and to model
anything but a small watershed would require large amounts of computer
time.

The developers of the SRM model point to the need for a compromise
between the two kinds of snow models (Brubaker, Rango, and Kustas,

1996) - a new model that would be both parsimonious enough to use in
practical applications for melt estimations over large areas, as well as
rigorous enough to capture the fundamental physics of melt and provide
spatially explicit estimations. To this end, they have recently attempted to
improve their estimations by including a more physically realistic radiation
component to their model (Kustas and Rango, 1994). Their new restricted
degree-day model has been shown to have some benefits, but in a test using
6 years of snowmelt runoff data, it improved predictions over their old
model in only 2 out of the 6 years.

The goal of this thesis was to develop a methodology for the
estimation of spatially distributed snowmelt based on point measurements
and topography. This was motivated by the need for a compromise between
the rigorous energy-balance snow models and the less data-demanding
index models (as pointed out by Kustas and Rango, 1994). The TopoFECS

model (Topographically Factorized Energy Component Snowmelt model)



was the result of this work. The remainder of this thesis describes the
development and testing of the TopoFECS model, which is a new method for
estimating the spatial distribution of snowmelt based on point measurements
and topography.

Chapter II gives a brief description of the TopoFECS model and how
it could be used in a practical setting to predict snowmelt. Chapter III gives
the theoretical background and derivation of the TopoFECS model. Chapter
IV shows the results of using the TopoFECS model to simulate both field
data and synthetically generated snowmelt data. The sensitivity of the model
to weather conditions, time step size, measurement points, spatial scale, and
sampling frequency are also explored in this chapter. Chapter V gives
practical guidelines for using the TopoFECS model, based on the results
shown in the previous chapter. Chapter VI summarizes the work, and offers

conclusions as well as recommendations for future work.



CHAPTERII

MODEL DESCRIPTION

The TopoFECS model is based on the fact that snowmelt is an energy-
driven process and that the energy available for melt is primarily dependent
upon solar radiation and air temperature, which are both functionally related
to topography. Solar radiation is a function of slope, aspect, and shading,
while air temperature is commonly considered to be a function of elevation
(Dingman, 1994). The assumption is therefore made that the spatial
distribution of energy can be partitioned into components that depend on a
radiation factor and an elevation factor, as well as a spatially constant factor
that captures the larger scale (synoptic) weather processes that drive
snowmelt, but can be considered to be constant over a region. The TopoFECS

model can be stated mathematically as follows:

Ah,, = max[((t) + B(t)elev, + rad, (1)), 0] )

where Ah,; is the depth of melt that occurs over the time step at location i
expressed in snow water equivalent; rad, is the direct, exoatmospheric
radiation at i, accounting for topography (slope and aspect) and integrated
over the timestep; and elev, is the elevation of location i. The terms a(t), B(t),

and y(t) represent a time-dependent factorization of the melt-producing



energy during the time step. a(t) is a topographically independent
component quantifying the base melt rate in the watershed caused by the
weather conditions during the current timestep, B(t) is an elevation-
dependent component quantifying the effect of elevation upon melt, and (t)
is a radiation-dependent component describing the transmissivity of the
atmosphere to incoming solar radiation as well as the albedo of the snow.
These energy factors, a(t), B(t), and y(t), are assumed spatially constant
throughout the whole watershed for each time step, but they do change from
one time step to the next, depending on the melt-producing effect of each of
the energy terms integrated over the time step.

Ignoring the maximum operator in Equation 1 gives a linear equation
with three unknown variables at each time step: a(t), (t), and y(t). The terms
elev, and rad, can be easily determined for every point in the watershed.
Therefore, given sufficient melt observations at topographically unique
points in the watershed, regression can be used to estimate effective values
for a(t), B(t), and y(t). If the maximum operator is included in Equation 1,
one can solve for the a(t), B(t), and y(t) parameters by minimizing the error
when fitting the equation to the observations. Once these three variables are
established for the given time step, the melt that occurs at every point in the

entire basin can be quickly calculated through Equation 1.



Intended Model Purpose

It is worth noting here that the TopoFECS model relies on a
simplification of the snowmelt energy balance that results in an interpolative
approach to obtaining distributed estimates of melt. The model is shown in
this thesis to be a valuable, practical method for estimating melt, but it
cannot perform all of the functions that a full energy balance model can. For
instance, the TopoFECS model cannot employ weather data or weather
predictions in its calculations. It cannot explore the fundamental physics of
snowmelt either; for these applications a full energy balance melt model is

required.

Operational Overview

Figure 1 shows a flowchart for the TopoFECS model. The model
requires a digital elevation model (DEM) of the watershed as shown in the
upper-left corner of the flowchart. From this DEM, elevations, slopes, and
aspects are calculated for each grid cell in the watershed. The slopes and
aspects are used to calculate the amount of exoatmospheric radiation that
each point in the watershed receives during a given time step.

Next, Figure 1 shows that the TopoFECS model requires

measurements of melt at a number of topographically unique locations



DEM of watershed

calculate slopes
and aspects

matrix of slopes,
aspects, and
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a(t), B(t), and y(t) snow-covered
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times of the year

Figure 1.

calculate total melt
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a(t), B(t), 1(t), elevation
and radiation indices,
and equation 1.

spatially distributed
estimates of snowmelt
for input to a streamflow
model

Operational flowchart for TopoFECS model.
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throughout the watershed. These measurement sites are referred to as

“index points” through the remainder of this thesis. A sufficient number of
melt measurements must be collected within the watershed to obtain a
sound calibration of Equation 1 at each time step. The melt at these index
points would ideally be measured with automated melt collectors, and the
data relayed back to a central processing station in real time. Once the
central processing station has received the values for total melt occurring at
each of the sampling locations over a specified time period, the model is
implemented to calculate the values of a(t), B(t), and y(t) for that time period.
Then, using the elevations from the DEM and the calculated radiation
indices, the melt is estimated from Equation 1 for all unmeasured points in
the watershed that are still covered with snow, as indicated by the current
map of snow-covered area.

Finally, Figure 1 shows that these estimates of melt may be used as
inputs to a flow-routing module, which is used to generate a prediction for

streamflow. This is the usually the quantity of interest.
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CHAPTER III

MODEL THEORY

This section shows how to obtain Equation 1 from the physical energy
balance equations relating driving meteorological variables to snowmelit.
The basic theory behind all of the physically based point snowmelt models
lies in balancing the energy budget for the snowpack and converting the
excess energy into snowpack temperature change, metamorphism, or melt.
The melt period of a seasonal snowpack begins when the net energy input
starts to have a positive trend. This period can be separated into the
warming phase, the ripening phase, and the output phase (Dingman, 1994).

During the warming phase, the net energy input raises the
temperature of the snowpack until the whole pack reaches the melting point,

as such:

AQ=cp h AT, ()

where AQ is the total positive energy input to the snowpack during a given
time interval (J-cm?), ¢, is the heat capacity of ice (2.102 J-g"C°"), p,, is the
density of water (1 g-cm?), h, is the depth of water equivalent of the
snowpack (cm), and AT, is the average change in temperature of the

snowpack.
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During the ripening phase and the output phase, the snowpack

remains isothermal at the melting point, but the additional energy input
causes some of the snow to change phase from ice to water according to the

following equation:

AQ = k,prhm (3)

where A, is the heat of fusion of ice at 0°C (333.7 J-g") and Ah_ is the depth of
snow in water equivalence that is converted to water (cm). During the
ripening phase, the liquid water is retained in the snowpack by surface-
tension forces until the snow reaches its liquid holding capacity. After this,
the output phase begins and melt water flows out of the snowpack.
Consequently, during the output phase (which is the phase of concern for
this model) the energy input is directly proportional to the amount of melt
outflow.

The energy balance equation relating the meteorological driving

forces to snowmelt is:

AQ=Q, +Q,+Q,+Q, +Q, +Q, 4)

where Q_, is the net shortwave energy received by the snowpack, Q, is the
net longwave radiation into the snow, Q, is the energy advected by

precipitation into the snow, Q, is the ground heat flux to the snow, Q, is the
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sensible heat flux to the snow, and Q. is the latent heat flux into the snow

(Dingman, 1994).

Physically based melt models usually require measurements of
driving weather variables such as air temperature, solar radiation, wind
speed, etc. These variables are used as inputs for various equations to
determine the quantities of the different components of the energy balance,
and the sum of these energy components is used to estimate the melt
occurring in a snowpack. These models have met with varying degrees of
success in estimating the actual process of snowmelt. One obstacle to this
method of physically modeling snowmelt is the difficulty of accurately
measuring these driving variables and then appropriately using them to
calculate each of the terms in the energy balance (Equation 4).

The TopoFECS model differs from most other melt models in that it
uses direct, real-time measurements of melt to drive the model, rather than
relying on measurements of the driving weather variables and trying to
relate these back to melt rates. As such, it uses several spatially distributed
measurements of actual snow melt to effectively back-calculate the driving
energy terms. These inferred energy inputs are representative of how the
weather in the watershed has actually affected snowmelt. These calculated
energy components are then used to calculate the melt for the rest of the

watershed.
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The theoretical justification for this model (Equation 1) lies in

recognizing melt as a linear function of available energy, and then
approximating each of the components of the energy balance equation
(Equation 4) as linear functions of elevation and potential solar illumination.
In order to derive Equation 1, all of the energy fluxes must be expressed as
linear functions of solar illumination and air temperature (and thus
elevation, assuming that temperature varies linearly with elevation).

Net solar radiation at any point, i, is comprised of diffuse and direct
components with the direct component related to illumination angle (the

angle of the sun from the perpendicular to the land surface) as follows:
Q.= Quut IIo-t-(l-A)-cos(w)-dt
&

where Q_; is the net shortwave radiation received at point i over the interval
At, Q. is the net diffuse shortwave radiation received during the timestep,
I, is the exoatmospheric solar radiation constant, < is the atmospheric
transmissivity to direct beam radiation, A is the albedo, and vy is the
illumination angle. Now, neglecting the fact that A changes slowly with time
as the surface ice crystals grow, and t changes with weather and sun angle, A
and t are taken out of the integral, and the integral of I -cos(y) at location i is

expressed as rad, as such:
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rad, = J-Io-cos(w)-dt
A

Assuming that the atmospheric transmissivity, 1, and the albedo of the snow
surface, A, are unknown but spatially uniform throughout the watershed
(justification for and implications of this assumption are discussed at the end

of this section), the above equation for net solar radiation can be written as:

Qs = rady(t) + Q. (5)

where t and (1-A) are combined into the factor y(t). Dingman (1994) gives a
formula for the calculation of rad, for a given slope, aspect, and latitude at a
daily time step. Dozier and Frew (1990) have presented TOPORAD, a model
that can rapidly compute rad, using digital elevation data incorporating the
effects of terrain shading in its calculations. In subsequent field testing of the
TopoFECS model, only local slope and aspect data was available, so the
effects of terrain shading were ignored.

Net longwave radiation can be expressed as:
Q,, =¢0-Ta' g oTs'

where ¢, is the effective emissivity of the atmosphere, o is the Stefan-
Boltzmann constant, Ta is the air temperature in the basin for the given time

period, €, is the emissivity of the snow surface, and Ts is the temperature of
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the snow surface (all temperatures here are relative to absolute zero). Since

it is desirable to write the energy fluxes as linear functions of air
temperature, the above equation is approximated as a truncation of a first-
order Taylor series expansion about Ta,_, , a constant reference temperature

as follows:
Q, =¢,0Ta "¢ oTs'+4¢0Ta_ (Ta-Ta )

Assuming that ¢, ¢, and Ts are uniform throughout the basin (again,
the impacts of these assumptions are discussed at the end of this section), the
terms in the last equation can be condensed to the following linear function

of air temperature:

Q.=A,+B,Ta (6)
Under conditions of neutral buoyancy, turbulent mass transfer theory
(Dingman, 1994) gives the sensible heat flux, Q,, as:

k*V
Q,= 7—3p.C,(Ta-Ts)

z 2
()
Zo
where k is the von-Karman constant, V represents the wind speed, z is the

height at which the wind speed is measured, z, denotes the effective

aerodynamic roughness of the snow surface, p, is the density of the air, and
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C, represents the specific heat capacity of air. Thus, sensible heat flux is

already a linear function of air temperature, and the above equation can be

simplified to:

Q=A,+B.Ta 7)

This simplification has lumped all of the variability in quantities such as
wind speed (V), roughness height (z ), air density (p,), and the surface
temperature (Ts) into the parameters A, and B,:, neglecting their spatial
variability. Of these, the spatial variability in wind speed is perhaps the
most serious; however, it is difficult to quantify this variability in a simple
way. The air density also changes significantly through space, since it is
related to elevation. The impact on the model results caused by the spatial
variability of these parameters is discussed at the end of this section.
Turbulent mass transfer theory (Dingman, 1994) gives the latent heat

flux to the surface, Q,, as:

K’V h0.622
Q.= ( 2)2 RdTa (e,-e)
In—
Zo

where h, equals the latent heat of vaporization for water, R, is the dry gas

constant, and e, and e, are the vapor pressures of the air and surface,
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respectively. These are related to temperature, relative humidity, RH, and

the saturation vapor pressure versus temperature function e (T) by:

e, =e_ (Ta)RH

e, =e,(Ts)

Lowe (1977) provides accurate polynomial expressions for e, (T).
Again, taking a first-order truncation of the Taylor’s series expansion
of this equation about a reference temperature, Ta,,, gives the following

expression:

KV h0.622
Qe = (l Z)Z RaT e [RH'enc(Tamf) -em(Ts)] +
n —
Zo.

K’V h0.622 (RH-A RH-ew(Taxs) ex(Ts)
(l z)z Ra Tarer Ta>, Ta’,
n_

Zo

where A represents the derivative of e, with respect to air temperature

] (Ta-Ta_,)
J

evaluated at Ta,,.

Assuming that V, z, and RH are uniform throughout the watershed
for a given time period (RH will change with elevation, but again this is
rationalized at the end of this section), the terms in the above equation can be

condensed to the following:
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Q. =A, +B,Ta 8)

Equations 4-8 can now be combined to write the following equation:

AQ =rady(t) +Q,, + A+ B, Ta+

Q,+Q,+A,+B,Ta+ A +B,Ta 9)

Though the terms y(t), Q,.» A\ By Q. Q. A, B, A, and B, may vary
with time, they are (by approximation) spatially constant throughout the
watershed. By condensing these terms into single constants (A and B), the

above equation can be simplified to:

AQ = rad,y(t)+ A +B-Ta (10)

Next, Ta is assumed to vary linearly with elevation according to an

unknown lapse rate as such:

Ta=aelev,+b (11)

Combining Equations 3, 10, and 11 gives:

Ap,Ah_=rad-y(t) + A +B[a-elev + b] (12)

Finally, condensing the constants in the above equation gives an

expression for Ah_, which is the depth of snowmelt in water equivalent:
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Ah_ = rady(t) + a(t) + B(t)-elev (13)
Equation 13 assumes a ripe snowpack (Equation 3), and as such is
only valid for positive net energy contributions, i.e., Ah_ > 0. Therefore,
adding this necessary condition that Ah,, is the greatest of either the energy
input or 0 (since negative energy does not result in negative melt) results in

Equation 1:

Ah_, = max[(a(t) + B(t)-elev, + rad, y(t)), 0]

where the subscript “i" denotes the the form of the equation at location i.
Here a(t) is an unknown energy input factor that is a function of time and is
representative of the base energy input to the watershed, equal to the

following:

a(t) = (A+B-b)/p A,

B(t) is another unknown energy input factor that varies with time and
represents the effect of elevation (or air temperature) upon snowmelt. Itis

equal to:

B(t) = B-a/p,A,

Finally, y(t) is a time-dependent factor that takes the net incoming direct
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shortwave radiation into account and is explained above. These three energy

input factors vary with time, but at the end of each time step, they are
assumed to be the same for every point in the whole watershed.

Because of the maximum operator, Equation 1 is a nonlinear equation
with three unknown variables, a(t), f(t), and y(t). The terms rad, and elev,
are known quantities for each point in the watershed. Therefore, given melt
observations at several points in the watershed (index points), one can fit the
equation to the data by minimizing either the sum of absolute errors or the
sum of squared errors, and obtain unique values for the parameters a(t), B(t),
and y(t). Once these three variables are established, the melt that occurs at
every point in the entire basin can be quickly calculated through Equation 1.
This procedure can be used at every timestep for which there are new
measurements of melt to determine the amount of melt that occurred
throughout the basin during that timestep.

It is interesting to note that the three terms in Equation 1 primarily
describe the effects of the terrain on net radiation and turbulent transfer.
Consistently in the literature, these two energy sources have been shown to
dominate the snowmelt process, to the point where the other terms are
usually negligible. Cline (1997) described a thorough experiment in the
mountains of Colorado that quantified all of the terms of the energy balance

during two melt seasons. He found that net radiation and turbulent fluxes
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were of the greatest importance, but that their relative contributions to the

overall energy balance varied from year to year. Kuusisto (1986) reviewed
over 20 studies of snowmelt energy balances and came to the similar
conclusion that net radiation and turbulent fluxes were the dominant energy
components driving snowmelt.

Equation 1 clearly models only melt, not the spatial distribution of
snow water equivalence. With the restriction that Ah_ > 0, Equation 1 is
incapable of modeling the accumulation of snow. However, if desired, the
TopoFECS model can be altered to keep track of the amount of water
equivalence in the snowpack. In this case, the snow water equivalence
needs to be maintained for each point as a state variable. The formula

governing the change in snow water equivalence at each point i is:

Aw, = precip, - melt, (14)

Assuming that precipitation is approximately linearly related to
elevation (Dingman, Seely-Reynolds, and Reynolds, 1988), we can write the

following equation:

precip, = ¢(t)-elev, + k(t) (15)

where @(t) is the unknown lapse rate for precipitation and «(t) is the

unknown base snowfall rate for the basin during the given time period.
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Computing melt, as max[(a(t) + B(t)-elev, + rad,y(t)), 0], as given in

Equation 1, results in the following expression for snow water equivalence:

Aw, = ¢(t)-elev + x(t) -

max[(a(t) + B(t)-elev, + rad,y(t)), 0] (16)

This equation assumes that the advected energy from the precipitation
has a negligible effect on the energy balance of the snowpack. Thisisa
reasonable assumption in most circumstances. In his review of over 20
snowmelt energy balance studies, Kuusisto (1986) found that on average,
energy advected from precipitation accounts for less than 1% of the energy
budget.

If snow does indeed fall during a time step, the above equation can be
simplified by dropping the maximum operator requiring that melt be greater

than zero and combining the similar terms to give:

Aw, = a_, (t) + B, (t)-elev, + rad,y(t) (17)

where

a,.(t) = -a(t) + k(t)

Bue(t) = -B(t) + o(t)

Y el £) = -¥()
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The TopoFECS model for snow water equivalence can now be stated

as follows:

If there is no precipitation

during a timestep:  Aw, = max[(a,,(t) + B.(t)-elev, + rad y(t)), 0]

swe

If there is precipitation

during a timestep:  Aw, =« (t) + B, (t)-elev, + rad, y(t) (18)

The first part of Equation 18 is simply Equation 1, while the second
part of Equation 18 is a linear equation whose unknown variables can be
solved for using simple linear regression. Therefore, given several
measurements of the change in water equivalence at different points in the
snowpack, one can use Equation 18 to model the snow water equivalence
just as one would use Equation 1 to model melt.

Finally, let us examine some of the original assumptions more
carefully. In the derivation of Equation 1 and subsequently Equation 18, the
atmospheric transmissivity (t), albedo of the snow surface (A), snow surface
temperature (Ts), relative humidity (RH), air density (p,), and wind speed (V)
were all assumed to be spatially invariant across the watershed. The air
density, atmospheric transmissivity, and the relative humidity will change
across the watershed, but the gradients will probably be very strongly

correlated with elevation. Therefore, the choice of elevation as a parameter



in the model will incorporate most of these effects, though only in a
linearized fashion. The albedo of the snow surface and the surface
temperature will most likely vary in space; however, these parameters are
intimately related to the energy that the snowpack has received, which is
primarily determined by the amount of radiation received and the turbulent
heat exchange that has occurred over the snowpack. Therefore, the model’s
dependence on elevation and radiation will incorporate the effects of
changing albedo and surface temperature, though again, only in a linearized
fashion. Finally, though these assumptions are not completely justified in a
rigorous, theoretical sense, they are all justified as pragmatic and expedient
in terms of the quality of the resulting approximations, as demonstrated in

the next chapter.
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CHAPTER IV

MODEL TESTING

This chapter provides an analysis of the performance of the TopoFECS
model using both synthetically generated data as well as field data. The
model is shown to be capable of producing reasonably accurate distributed
estimates of snowmelt. The effect of selecting different numbers of index
points and different locations for those index points is investigated. The
model’s performance under both clear sky and cloudy conditions is
analyzed. Finally, the appropriate spatial and temporal scales for applying

the TopoFECS model are examined.

Data Used

Three data sets were used in this study. The first data set was
synthetically generated by another snowmelt model and represents perfectly
measured melt data. However, the model that generated the data represents
a limited understanding of the physics of snowmelt, and therefore may not
be completely accurate. The second set of data consists of distributed field
measurements of snow water equivalence taken from the Upper Sheep Creek
watershed in the Reynolds Creek Experimental Watershed. Because of the
gridded nature of the data in Upper Sheep, it facilitates a visual analysis of

the spatial melt patterns, something not available in the other data sets. The
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last set of data comes from field measurements taken in Smithfield Dry
Canyon in the spring of 1997. Each of these data sets is described in more

detail in the following sections.

Svnthetically generated data

Because of limited field data, much of this research was performed on
data that were synthetically generated by the Utah Energy Balance (UEB)
model (Tarboton and Luce, 1996). The UEB model is a physically based
energy balance model that represents the snowpack in terms of two state
variables, water equivalence and energy content. A third state variable is
used to quantify the snow surface age, which is used for albedo calculations.
The use of only three state variables makes the model less complicated than
typical energy balance melt models and therefore suitable for generating
many simulations of melt at different points. The model uses a
parameterization of surface heat flux into the snow based on the difference
between the snow surface and average snowpack temperatures to balance
external energy fluxes at the snow surface and to calculate snow surface
temperature without introducing additional state variables.

In order to generate a full set of snowmelt data with which to test the
TopoFECS model, a hypothetical terrain was simulated. This was
accomplished by assigning randomly generated slopes, aspects, and

elevations to each of the points in the hypothetical watershed. Next, the UEB
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model was used with weather data recorded at the Central Sierra Snow
Laboratory during the winter of 19861987 to calculate snow accumulation
and melt at each of the hypothetical points. The incoming exoatmospheric
radiation at each point was modified to account for slope and aspect, while
the air temperature for each point was adjusted according to a lapse rate of
1° C for every 150 meters that the point was above the datum (Dingman,
1994). In this manner, a time series of snow water equivalence and snowmelt
was generated for every point in the hypothetical watershed. This melt data

could then be used to test the predictive ability of the TopoFECS model.

Upper Sheep Creek data

The Agricultural Research Service has collected many years’ worth of
snow survey data at Upper Sheep Creek Watershed, located in the Reynolds
Creek Experimental Watershed, near Boise, Idaho. The Upper Sheep Creek
Watershed is a small 26-ha basin varying in elevation from 1840-2036 m. It
is marked off in a 100-foot (~30 meter) grid and the water equivalent at each
point is periodically measured with a snow tube during the spring of each
year. The melt that occurs between measurements can be calculated by
subtracting the previous water equivalent from the subsequent measurement
of snow water equivalent and adding any new snowfall. This provides a
rare data set of spatially distributed melt measurements on rugged terrain.

Data from two snow years, 198687 and 1993—-94, were available for analysis.
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Figure 2 shows the location of the Upper Sheep Creek watershed as well as a

contour map of the basin.

Smithfield Dry Canyon data

During the 1997 melt season, melt measurements were collected at 31
locations in Smithfield Dry Canyon at approximately 5-day intervals. These
locations were distributed over a range of 1200 feet (366 meters) in elevation,
varied in slope from 0-38 degrees, and faced a variety of different directions.
The topographical data for each of these sites are given in Appendix A, and a
topographic map of the sampled area is given in Figure 3. Three graduated
stakes were placed within a meter of each other at each of these sites. These
stakes were painted white to decrease the effect of absorption and re-
emission of radiation. Every 4 days or so the depth of snow indicated on
each stake was recorded and the density of the adjacent snow
was measured with a snow-tube. By this process, accurate measurements of
the melt that occurred at each of the locations for each of the time steps were
obtained (as an average of the melt occurring at the three stakes). The
complete listing of this original data is given in Table 3 (Appendix A).

The melt that occurred between subsequent measurements at a site
was calculated by subtracting the amount of snow water equivalent (SWE)
measured at one time period from that of the preceding time period. No

new snow fell during the melt period; thus the one negative value of melt
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was set to zero. The SWE was calculated as the average depth of snow
recorded at the three stakes multiplied by the measured density of the snow
at the site.

In order to determine the density at each site, the snow tube depth
was divided by the weight of snow measured. In cases where there were
two such measurements of density for a single date, the two calculated
densities were averaged. In cases where there was only one measurement of
density, it was averaged with measurements from similar, neighboring sites
to provide a more robust estimate. In some cases (on later dates), the snow
was too shallow to obtain a measurement of density, so the density from the
last measurement date was used. These calculated densities are plotted in
Figure 4, and the adjusted densities are shown on Figure 5.

It is apparent from Figure 4 that some error remained in the density
calculations for the Smithfield Dry Canyon data. In particular, points 10, 13,
14, 25, 26, 27, 28, and 30 show instances where the calculated density
decreased with time. Since the entire melt period was characterized by fairly
consistent melt with no accumulation of new snow, the density should only
have increased. Though it is possible for snow density to decrease due to
internal melting of the ice lattice causing hollow voids beneath a surface
bridge of ice, this phenomenon was never observed. Therefore, these

inconsistent points were modified using the following equation:
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where p, is new density for the latter date, p_ is the new density for the prior
date, p,,,, and p,, _are the original measured density at the latter and prior
dates, respectively, and p,,, and p,,. are the average measured densities of all
the points in the data set before correction for the latter and prior dates,
respectively. In this fashion, the average density increase for the time period
was applied to each deviant density measurement. These adjusted densities
are plotted in Figure 5.

Finally, the values of SWE at each point and for each measurement
date were calculated by multiplying the depth of snow recorded at each of
the three stakes by the adjusted densities, and averaging this product across
the three stakes. Subtracting subsequent values of SWE yielded the melt that

occurred at the site over the time period.

Regression Methods

In all analyses, least-squares linear regression was employed to
calculate the a(t), B(t), and y(t) terms whenever the TopoFECS modeled melt
with accumulation (Equation 18b). When the nonlinear form of the model

was used (Equation 18a) to model solely melt with no accumulation, the a(t),
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B(t), and y(t) terms were chosen in order to minimize the absolute error

according to the following equation:

Min {Zlmax(a(t) + f(t)eelev, + y(t)o rad,, 0) — measured melt,

|

A quasi-Newton method was used in this optimization. (See Dennis, Gay,
and Welsch [1981] and Dennis and Mei [1979] for details on the method.)
Detailed regression diagnostics are only presented for the simpler least-

squares linear regressions (Equation 18b).

Initial Model Testing

In order to test the predictive ability of the TopoFECS model, the
model was applied to all three data sets: the synthetic data, the Upper Sheep
Creek data, and the data from Smithfield Dry Canyon. For each data set, a
group of index points was chosen and used throughout all available melt
periods to estimate the a(t), B(t), and y(t) terms. Descriptions of the results

for each data set are given in subsequent sections.

Synthetic data

For this analysis, 200 points were generated with the UEB model with
slopes randomly selected from a uniform distribution over the range of 0°-

60°, random aspects ranging uniformly all the way around the compass, and
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random elevations selected from a uniform distribution over a range of 1500

meters. The weather conditions at each point were simulated as described in

the “Synthetically generated data” section. The simulated snow water

equivalence (SWE) at every point was recorded every 48 hours, and the melt

during each 48-hour period was calculated as the difference in SWE between

subsequent time steps. The following points were chosen as the index points

to be used to determine the a(t), B(t), and y(t) terms throughout the melt

season:

Point 1

Point 2

Point 3

Point 4

Point 5

Elevation:

2650 m

3420 m

2166 m

3390 m

2869 m

Slope:
57°
59°
54°
56°

58°

Aspect,
clockwise
from
North:
316°

353°

169°

72°

116°

Characteristics:

Low radiation, med. elevation
Low radiation, high elevation
High radiation, low elevation
Med. radiation, high elevation

High radiation, med. elevation

These points are extremely varied in terms of elevation and radiation

received. This wide range of variability is important for accurate melt

predictions, as will be discussed in the section entitled “Selection of Index

Points.”
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Figure 6 shows eight plots of the UEB-generated melt versus the

estimates for each of the 200 points obtained using the TopoFECS model
(only those points at which the UEB model still predicts the presence of snow
are shown, since the results are meaningless if the snow has completely
melted). These correspond to the eight 48-hour melt periods from March 28—
April 13. The solid line in each plot is the 1:1 line, representing a perfect fit.
As can be seen, the TopoFECS model performed fairly well, but not
perfectly. The Nash-Sutcliffe measure of predictive accuracy (or NS value)
for each plot is given in the figures. Following Gupta, Sorooshian, and Yapo

(1998), these NS values were calculated as follows:

NS=1- M (19)
2 -7
where y represents the values of melt calculated by the UEB model (or
“measured” melt value), 7 is the mean of all melt values calculated by the
UEB model, and j represents the values of melt predicted by the TopoFECS
model.
Table 1 gives a summary of the regression diagnostics for five out of
the eight time steps displayed in Figure 6. The five time steps, March 28-30,
April 3-5, April 5-7, April 9-11, and April 11-13, were chosen for this

analysis because precipitation fell on those dates, enabling the use of the
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Table 1.

Statistical analysis of regressions on synthetic data for the
following dates: Mar 28-30, Apr 3-5, 5-7, 7-9, 9-11, 11-13

p Values
o B Y overall
March 28-30 0.03 0.03 0.01 0.01
April 3-5 0.07 0.06 0.02 0.02
April 5-7 0.08 0.13 0.07 0.18
April 9-11 0.26 0.08 0.04 0.05
April 11-13 0.33 0.17 0.06 0.07
R2 Values
March 28-30 0.99
April 3-5 0.99
April 5-7 0.88
April 9-11 0.97
April 11-13 0.95
F-Statistic; Significant with 90% Confidence if >54
March 28-30 89
April 3-5 55
April 5-7 5
April 9-11 19
April 11-13 13
Cook's Values - Significantly Influential if >9.16
index index index index index
pointl point2 point3 point4 point5
March 28 - 30 0.57 0.06 14 2 0.69
April3-5 1.1 0.44 1.5 0 0.37
April5-7 0.46 0.62 14 0.07 0.24
April7-9 0.35 3.7 0.85 0.07 0.02
April9-11 0.34 3.8 0.99 0.02 0.01
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linear form of Equation 18. The p-values for the regression coefficients are
especially interesting. These indicate that the y(t) or radiation term is the
most significant term in the regression, followed by B(t), and finally by a(t).

Table 1 also gives the Cook’s distances for each of the index points
used in the regression for each time step. The Cook’s distance is a measure
of the combined influence of the i" point on the regression coefficients. It
assumes greater values for data points with large residuals, large leverage
values, or both. It has been suggested (Cook, 1977) that an observation is
significantly influential if the Cook’s value exceeds the lower 10" percentage
point of an F-distribution. Here, the degrees of freedom in the numerator are
the number of parameters used, and the degrees of freedom for the
denominator are the number of observations minus the number of
parameters. In this case with three parameters in the model and five index
points, the lower 10" percentage point is 9.16. All Cook'’s values for the
given index points in Table 1 are well below this value, indicating that none
of them significantly altered the outcomes of the regressions.

Another point of interest in Table 1 concerns the relatively high R’
values (or adjusted multiple coefficients of determination) for some of the
regressions. Following Mendenhall and Sincich (1992), these R’ values were

calculated as follows:
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n-(k+1)| > (y=-¥)

al
Rie |__(n-1) {Z(y—y)] 20)

where y represents the value of melt at each of the index points as calculated
by the UEB model (or “measured” melt value), y is the meanofy, y
represents the value of melt at the index point as predicted by the TopoFECS
model, n is the total number of index points used in the regression, and k is
the number of model parameters (three).

The higher R’ values do not necessarily indicate exceptional model
performance, as evidenced by the plots in Figure 6. Since the R’ value is
based on a very small sample size (5 index points, leaving only 2 degrees of
freedom in the regression), it is likely that some of the regression R® values
will indicate a much better fit than is actually obtained when predicting 200
points.

The regression statistics given in Table 1 should be viewed as rough
estimates only, since the statistical confidence of the regression is difficult to
ascertain with only five points. The F-statistics in particular show the lack .of
statistical confidence in the regressions. Only two of the five regressions
analyzed are significant with 90% confidence (F-statistic greater than 54).
However, the measure of success of the model should be judged in terms of

its predictive accuracy.
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In Figure 6, it is apparent that the linear TopoFECS model is not

entirely appropriate for modeling this synthetic data set. Though most
points fall on or near the 1:1 lines, the points on the left-hand sides of the
graphs cluster into vertical lines, indicating that melt is not a continuously
linear function of radiation and elevation near the points with zero melt. A
possible cause for the departures in the data may be the nonlinearity of the
UEB model caused by the storage of energy in the simulated snowpack.
Regardless of the reason behind these errors, it is obvious that the TopoFECS
model cannot reproduce the UEB results exactly.

Figure 7 shows two residual plots (UEB simulation minus TopoFECS
estimates) for two different time periods: April 5-7, and April 17-19. A solid
line was drawn horizontally through each plot where the residuals equaled
zero. If the underlying relationship between radiation, elevation, and melt as
modeled by the UEB model were really a linear function, then the residuals
ought to be uniformly scattered about these lines. However, the LOESS
(Cleveland and Devlin, 1988) smoothes of the data, shown by the dashed
lines, show a very apparent trend in the residuals in both plots. This
suggests that the linear TopoFECS model is not completely adequate to
describe the behavior of the melt modeled by the UEB model.

Figure 8 shows two plots of the residuals (UEB simulation -

TopoFECS estimates) versus incoming exoatmospheric solar radiation. The
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Plot of residuals (UEB simulations minus TopoFECS estimates)

vs. UEB-simulated melt.
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same two time steps examined in Figure 7 are used here. Again, solid lines
were drawn horizontally through each plot where the residuals equaled
zero, and LOESS smoothes were plotted as dashed lines. These smoothes
show a very apparent trend in the residuals in the first plot and a slightly
weaker but still existent trend in the second. This indicates that the melt
modeled by the UEB model is not linear with respect to radiation, and
therefore the linear TopoFECS model is not completely realistic.

Figure 9 shows plots of the residuals for the same time periods (April
5-April 7 and April 27-April 29) versus elevation. Once again, a solid line
was drawn across the plots where the residuals equaled zero, and LOESS
regression lines were drawn through the data to show any trends. Structure
can be clearly observed in the residuals of the first plot; the TopoFECS model
tends to underpredict melt at both upper and lower elevations and over-
predict melt at the middle elevations. The variance of the errors increases as
well with increasing elevations. Weaker trends in the residuals can be
observed in the second graph as well. This indicates that the assumption of
melt varying linearly with elevation may not be entirely appropriate.

In this analysis of the residuals, it is important to bear in mind the
nature of the data. The UEB model does not calculate melt as simply a linear
function of radiation and air temperature with some Gaussian noise added.

Rather, the UEB model produces melt estimates according to well-



0.02 0.04 0.06 0.08 0.10

residuals, m, UEB simulation - TopoFECS estimate
0.0

-0.02

-0.04

0.0 0.02 0.04 0.06 0.08

residuals, m, UEB simulation - TopoFECS estimate

-0.02

Figure 9.

Melt period: Apr 5-7

’
e
L] . Al .
L . . -
° . M ¢ . * LI R S
":::: ... 0:' .':.: e . '- . . © T ° . ’ ’ _'--":’-.-.
LI e bt SN :~- e o * . .O ., -,'_‘,‘J:. T ° .
. T ] -a-.'.-_-' o _.._.._' <, . 3
. ) ST dew H -
. * . * .. .
. . « " o -
. o o .‘ .‘ .. . . . N . .
. . . - . . ® . o
. ¢ te Q0 ° - <
.t
3000 3500 4000
elevation, m
Melt period: Apr 17-19
. R I . .., :. - . . .
“, . .. . e S :.r. ) ’_-:-,_'.-:': -
. T AT o LT
P A e £ LR Gt " P « * .
A - . «® ee « T e
o . . ¢ «e ¢
- .. - - .. - *e
. - L] ..‘

elevation, m

46

Plot of residuals (UEB simulations minus TopoFECS estimates)

vs. elevation: synthetic data.
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defined, mathematical functions. Therefore, one ought to expect highly

structured residuals rather than the normally distributed, random residuals
typically associated with actual field data.

A closer fit to the data could probably be obtained by using a higher-
order polynomial regression, but this would require measurements from
more index points. However, since the linear model obtained relatively
good results for both time steps (NS values of .73 and .84, respectively), the
linear model is probably sufficient for practical applications.

Figure 10 shows the cumulative melt for eight sites that were selected
semi-randomly to show different extremes of accumulation and ablation.
The points show the actual UEB results, while the lines show the TopoFECS
estimations of the melt process using Equation 18. These figures are shown
because this is a common way to display accumulation and ablation of the
snowpack. The average Nash-Sutcliffe measure (NS) of predictive accuracy
of the model for the eight points shown is .95, while the average NS for all of
the 200 points is .94.

Since in reality radiation can affect air temperature, and since this
interaction was not accounted for in the above calculations, the UEB model
was also run on 40 other points in which the air temperature was modified
proportionally with incoming radiation by as much as 30°. Figure 11 shows

eight more plots of the UEB-generated melt under these conditions versus
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the TopoFECS estimates. Again, these correspond to the same eight 48-hour

melt periods, covering the time period from March 28-April 13. The NS
values (calculated as in Equation 19) for these plots are given. As can be
seen, the TopoFECS model’s performance under these conditions seems very
comparable to those under the initial conditions where air temperature was
independent of radiation. Therefore, any interaction between air
temperature and solar radiation can be sufficiently accounted for by the

TopoFECS model.

Upper Sheep Creek data:

When the TopoFECS model was applied to the distributed melt
measurements at Upper Sheep Creek, the results were extremely poor.
Figure 12 shows two X-Y plots of the model’s estimates versus the
measurements. These two plots correspond to the two time periods March
25-April 9, 1986, and April 30-May 13, 1993. Though many index points (11
for each prediction) were used to obtain a more robust calibration of the
TopoFECS equation, both sets of estimates have NS values of less than .01.
To understand why the model failed, one must look at the melt data. Tables
8 and 9 in Appendix B give the measured values of snow water equivalence
at each point in the watershed for March 25, 1986, and April 9, 1986,
respectively. Table 10 (Appendix B) shows the melt between the two dates

estimated by subtracting the April 9 values from the March 25 values.
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Tables 11 through 13 (Appendix B) show the same information for April 30—

May 13, 1993. Tables 10 and 13 show large discrepancies in melt values
between neighboring cells. In a few instances, some cells even gained
significant amounts of snow (indicated by negative melt values) while cells
nearby lost large amounts.

Erratic depletion patterns such as these might be observed during
periods of extreme drifting or extremely variable snowfall events. However,
during the time from March 25-April 9, 1986, the average temperature in the
basin was 5.3° C, and less than 3.3 inches of precipitation fell. From April
30-May 13, 1993, the average temperature was 6.3° C, and less than 1.1
inches of precipitation fell. Since the temperatures were so high, it can be
assumed that the snow was consistently ripe and heavy; therefore no drifting
occurred. Because of the low amounts of precipitation, these depletion
patterns cannot be explained by erratic snowfall.

Differing melt conditions caused by topographic variances across the
watershed could also be the culprit for these erratic depletion patterns.
However, these differences cannot be due to elevation changes, because
there is a range of merely 196 meters from the bottom of the watershed to the
top. In order to determine whether this phenomenon could have been
caused by extreme differences in melt rates caused by differing amounts of

solar radiation, the values of melt for each cell were plotted versus incoming
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radiation in Figure 13. As can be seen, there is no observable trend with
radiation.

Instead, the reason for these discrepancies lies in the methods used to
obtain the measurements of snow water equivalence. Each point was
measured only once each period using a snow tube. The tube was inserted
within a meter or two of the stakes that marked out the grid, so that the same
spot was never measured twice. Because of the undulating nature of the
ground beneath the snow, sometimes the tube would go into a pit downhill
from the stake, causing a deep measurement, while at other times the tube
would strike a rise in the ground or a sagebrush uphill from the stake,
causing a shallow measurement. This phenomenon was observed first-hand
while assisting in the collection of SWE data in 1996. Apparently, the
magnitude of the measurement noise incurred by this method of sampling
overwhelms the magnitudes of the melt that occurred during the intervals
between measurement dates. In particular, it overwhelms the magnitude of
any differences in melt that could be observed between two grid points.

Since the measurements of snow water equivalence at Upper Sheep
Creek were so noisy, a point-by-point analysis of the TopoFECS model using
the data is not appropriate. However, the data set was retained to
demonstrate the effect of severe measurement noise upon the TopoFECS

model. Also, because of the gridded nature of the Upper Sheep Creek data
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set, it is ideally suited to a visual analysis of the spatial patterns of melt.
Therefore, the TopoFECS model was used to estimate the melt occurring at
each point in the grid, and then this was subtracted from the original snow
water equivalence to arrive at an estimate of the new distribution of snow
water equivalence. Figure 14 shows side-by side comparisons of the
measured snow water equivalence (SWE) in meters with that predicted by
the TopoFECS model for three different dates in 1986. The first graph shows
the SWE that was used to initialize the TopoFECS model. Figure 15 shows
the initialization snow water equivalence map and the same side-by-side
comparisons for three dates during the 1993 melt season. All points with
snow still remaining on them were used as index points in the TopoFECS
calculations for stability. As can be seen, the patterns of SWE appear to be
estimated fairly well by the TopoFECS model, even though the observed
melt values do not match the TopoFECS estimates (indeed, the actual melt
may be a lot closer to that predicted by the TopoFECS model than what was
estimated from the observed difference in SWE, since the TopoFECS model
smoothes out the large errors in the data with basically an average basin-
wide melt value). Since the depth of SWE in this data set is quite often an
order of magnitude larger than the depth of melt occurring, large errors in
melt are not as easily recognized when comparing measured SWE to

modeled SWE. This is a convincing argument for the use of melt (which
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is the rate of change in SWE) rather than SWE comparisons to validate a

snowmelt model.

Smithfield Dry Canyon data

The melt at Smithfield Dry Canyon was modeled in the same fashion
with the TopoFECS model. Though no new snow fell during the study, the
linear form of Equation 18 was used to predict melt for both time steps in
order to simplify the analysis. This was deemed to be valid, since significant
melt was recorded at all measurement points, obviating the need for the
maximum term. Five index points were used: points 1, 5, 7, 26, and 29. The
topographic characteristics of each are given in Table 3 (Appendix A). These
points were chosen to cover a wide range of elevation and exoatmospheric
radiation values.

Figure 16 shows X-Y plots of the TopoFECS model results versus the
measured melt for the March 9-13 and March 13-19 melt periods. Points 1,
5,7,26, and 29 (see Appendix A for point characteristics) were used as index
points in both cases, and are shown as triangles. The top graph (March 9-13)
has an NS value of 0.51, while the lower graph has an NS value of .76. Itis
interesting to note the predictions for points 16, 17, and 18, which are
represented as +'s in these figures. These data points were collected in a
large, new drift that formed around the 7th of March. They were therefore

composed of deep, fresh snow, and the energy during the first few days
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contributed towards metamorphism or ripening of the snow rather than
melt. This is evidenced by an underprediction of melt in the first period,
while in the second period, after the snowpack had ripened, the predictions
are more in line with observed melt. If these three points are ignored in the
first graph, the calculated NS value increases significantly to 0.77.

Table 2 gives a summary of the regression diagnostics for these two
time periods. Again, the p-values for the regression coefficients indicate that
the radiation term, (t), is the most important term in the regression. This
term is followed in significance by the elevation term, B(t), and finally by
a(t). All terms are significant to at least the .19 level. It is also apparent from
the computed Cook’s values that none of the index points exerted undue
influence on the regressions.

Again, the residuals of the modeled versus measured melt values
were examined to determine the existence of any trends with respect to
radiation or elevation. Figure 17 shows plots of the residuals (measured melt
minus TopoFECS estimates) for each of the two time periods. Each plot has a
solid, horizontal line drawn through zero, and a dotted LOESS regression
line through it. In both time periods, the TopoFECS model seems to under-
predict low values of melt and overpredict high melt values.

Figure 18 shows two graphs, one for each time period, of the same

residuals plotted versus radiation, and Figure 19 shows the residuals plotted
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Table 2. Statistical analysis of regressions on Smithfield
Dry Canyon data

Values
o B vy overall

March 9 - March 13,1997 [0.07 0.07 0.03 0.02
March 13 - March 19, 1997 [0.19 0.18 0.13 0.09

R2 Values
March 9 - March 13, 1997 0.99
March 13 - March 19, 1997 0.94

F Statistic; Significant with 90% Confidence if >54

March 9 - March 13, 1997 52
March 13 - March 19, 1997 10

Cook's Values; Significantly Influential if >9.16

index index index index index
pointl point2 point3 point4 point5

March 9 - March 13,1997  |0.68 0.28 0.04 0.19 0.68
March 13 - March 19, 1997 ]0.63 1.3 1 0.01 2.2
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versus elevation. Again, solid lines are drawn across the plots where the
residuals equal zero, and LOESS regression lines are plotted as dashed lines.
There are no observable trends in either of these plots, suggesting that the
linear TopoFECS model is appropriate for modeling data within the ranges
of solar radiation extremes and elevation extremes encountered in this data
set.

A noticeable feature of Figure 19 (particularly in the top plot) is the
“clumping” of points at different elevations. This is an artificial effect
created by the nature of the data collection method. As shown in Figure 3,
many of the data points were located in clusters to increase the measurement
efficiency. The data points within these clusters had similar elevations.
Naturally, points that were clustered close together tended to melt somewhat
similarly due to the effects of local topography. Therefore, the residuals tend

to clump together according to elevation.

Selection of Index Points

A crucial element for the practical application of the TopoFECS model
is the proper selection of the index points at which to measure melt.
Obviously, the points need to be chosen to have unique elevations and
radiation indices in order to obtain a unique solution to the regression

equations. But how many index points are necessary, and how dissimilar
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should the points be (or where should they be located) in order to make
reliable predictions? This section attempts to answer these questions by

analyzing the impact of using different index points.

Location of index points

This section examines the problem of choosing the optimal points to
use as index points for modeling a watershed. For instance, is it sufficient to
use only index points located on west-facing, 15° slopes and similar
elevations to model other points with very different slopes, aspects, and
elevations? Or instead, should one use extremely varied locations ranging
across south-facing and north-facing slopes as well as from the bottom and
top of the watershed?

Results from using different index points from both the synthetic as
well as the Smithfield Dry Canyon data sets are used in this section to
answer this question. The data from Upper Sheep Creek were not evaluated,
since the data here have been shown to be too inaccurate for use with the
TopoFECS model.

Two factors in the selection of the index points were hypothesized as
being important to obtaining reliable results: the “spread” of the index points
within the variable space (radiation-elevation space), and the distance (or
“offset”) of the center of these index points in variable space from the center

of the rest of the data points to be modeled.
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The “spread” of the index points within the variable space is a
measure of the variability of the index points. If one point is located such
that it receives large amounts of solar radiation during the melt period and is
at a high elevation, while another point stays mostly in the shade and is at a
low elevation, then this will be defined as a large “spread” between them in
variable space.

The distance of the center of the index points in variable space from
the center of all of the data points (referred to as the “offset”) is a measure of
how well the index points represent the average characteristics of the
watershed. For instance, if five index points were chosen in the lower
elevations of a watershed, and with high radiation indices, then their
collective center of mass within the variable space would be offset from the
center of mass of the other points in the watershed. However, if five points
were chosen with an even distribution throughout the variable space, their
collective center of mass would probably fall very near the center of mass for
the rest of the watershed.

In order to determine how the “spread” of the index points and the
“offset” of the index points affect the accuracy of the TopoFECS model, a
Monte-Carlo procedure was adopted to repeatedly select a specified number
of points at random to be the index points for applying the TopoFECS model.

After the parameters aft), B(t), and y(t) were obtained and the estimates of
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melt at the rest of the points were calculated, the median absolute error
(MedAE) of the estimates was calculated and recorded. Since the radiation
values were of a much larger magnitude than the elevation values, the
radiation-elevation space was scaled according to the range of the radiation
and elevation values of all of the points in the data set. The area in this
scaled radiation-elevation space formed by the convex hull of the index
points was calculated and recorded, as a measure of the “spread” of the
index points. Finally, the Euclidean distance in this scaled radiation-
elevation space between the center of the index points and the center of all
data points was recorded as a measure of the “offset.” This process was
repeated 400 times for each analysis.

Two melt periods were analyzed from both the synthetic data set and
the Smithfield Dry Canyon data set. From the synthetic data set (created in
the “Initial Model Testing” section), periods April 5-7 and 17-19 were
chosen. Smithfield Dry Canyon melt data from March 9-13 and from March

13-19 was used.

Effect of “spread”

Figure 20 displays plots of the results using the synthetic data and 400
groups of three randomly selected index points. The x-axis shows the
standardized area in radiation-elevation space encompassed by the index

points, or the “spread,” and the y-axis shows the median absolute error
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(MedAE). The area was standardized by dividing by the largest recorded

value of area obtained, and the MedAE values were standardized by
dividing by the range of the observed melt values. The data points were
very scattered, and so LOESS regression lines were drawn through the data
to show the trends. These lines show a decrease in Med AE (or an increase in
predictive accuracy) with an increase in “spread.” This is due to the
stabilizing effect of spreading out the index points in space. If the index
points are too close together, the regression equations become unstable.
Therefore, using highly dissimilar index points at the extremes of the
elevation and radiation ranges tends to produce more reliable results.
Figure 21 shows the results of using the same data and time periods
used in Figure 20, but employing five random index points instead of three.
As can be seen, the trend observed in Figure 20 is missing. This is due to the
stabilizing effect of adding two more index points to the regression, which
enabled nearly all of the regressions to produce fairly low values of Med AE.
Figure 22 gives two more similar graphs displaying the results of
using five randomly selected index points to model the Smithfield Dry
Canyon data. In both of these plots, there is an obvious decrease in MedAE
as the index points are spread out further in radiation-elevation space. By

comparison with Figure 21, it can be inferred that the “spread” of the index
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points in radiation-elevation space is more crucial with real data where

measurement noise is a concern.

Effect of “offset”

Figure 23 shows the same data used in Figure 20 (synthetic data, three
random index points used in the regressions), except here the standardized
MedAE values are plotted against the standardized “offset” (Euclidean
distance in a scaled radiation-elevation space) of the center of the index
points from the center of all data points. Here, the “offset” was standardized
by dividing by the largest recorded “offset” value. Again, a solid LOESS
regression line was drawn through the points to show the trends. Though
the first graph shows no obvious trend, the second one shows a pronounced
increase in Med AE with an increase in the “offset.” This is expected, since an
increase in “offset” moves the index points further from the middle of the
data, resulting in a less representative regression.

Similarly, Figure 24 displays the same data used in Figure 21
(synthetic data, five random index points used in the regressions), but plots
the standardized MedAE against a standardized “offset” rather than
“spread.” The LOESS regression line shows no clear trend in either graph,
due once more to the stabilizing effect of using two additional index points

in the regression.
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Figure 25 plots the data from Figure 22 (Dry Canyon data, 5 random

index points used in the regressions) against “offset.” In both of these
graphs, the LOESS regression lines show clear trends towards higher MedAE
values, or worse predictions, with increasing “offset.” It can be inferred by
comparison with Figure 24 that the choice of index points with a low “offset”
is most important when using real data with measurement noise.

Comparative effects of “spread”
and “offset”

Finally, Figures 26-28 show 3-D perspective plots of the standardized
MedAE versus the standardized distance between the centers of the index
points and the rest of the points (or “offset”), and versus the standardized
area in radiation-elevation space encompassed by the index points
(“spread”). These plots were smoothed by LOESS regressions in order to
capture the underlying trends. They basically show the same trends as
revealed in the 2-D plots, but they also show the relative importance of each
effect. Figures 26 and 28 show that the “spread” of the index points is the
largest determining factor in the accuracy of the estimates, and the “offset”
appears to play a relatively smaller role in model performance. An
examination of the z-axes of the plots in Figure 27 (where 5 random index
points were used to regress on the synthetic data) reveals that these surfaces

are essentially flat and exhibit no real trends. This is consistent with the lack
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of trends revealed in the 2-D plots of Figures 21 and 24.

Number of index points used

In order to determine the benefits of using more index points in the
TopoFECS regression, the model was applied 100 times using different sets
of three randomly selected index points each time. The “spread” of the index
points (measured as the area in elevation-radiation space encompassed by
the convex hull of the index points) was computed, the melt estimates were
calculated for all points, and the associated median absolute error (MedAE)
values and mean absolute error (MAE) values for the predictions were
recorded for each of the 100 iterations. This process was repeated using four
index points, five index points, and so on using up to 13 random index
points. This procedure was applied to each of the same time periods used in
the previous section entitled “Location of index points” for both the synthetic
data sets and the Smithfield Dry Canyon data.

Figure 29 shows the results of performing this analysis with the
Smithfield Dry Canyon data. Here, the MedAE values standardized by
dividing by the range of the measured melt values are piotted against the
number of index points used. The solid points show the median of the
MedAE values versus the number of index points used. The solid line
through these points is a LOESS regression line spanning 40% of the data.

Next, the Med AE’s of each group of 100 realizations were sorted according
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to the “spread” in variable space of their associated combination of index
points. The median of the Med AE values for the 34 realizations having the
highest spread in each group of 100 iterations (highest third) was plotted
against the number of index points used (shown as triangles in Figure 29).

The first graph in Figure 29 shows the expected decrease in modeling
error associated with increasing the number of index points used in the
calibration. It also shows how selecting index points with a high “spread”
can increase modeling accuracy even more. However, the second graph
(depicting the melt period from March 13—19) shows an eventual increase in
MedAE with the use of more than eight index points. The reason for this
counter-intuitive trend lies in the use of the median absolute error (MedAE)
to measure model performance. Since there are only 15 available data points
in the time period from March 13-19, the median value for modeling error
will correspond to the eighth most accurately modeled point. Therefore, if 8
index points are used, that eighth point will be included in the regression
and will be very accurately modeled. However, if all 15 points are used, the
eighth point will still be included in the regression but it will not have as
much influence on the regression and consequently will not be modeled
quite as well.

To circumvent this problem, the mean absolute error (MAE) was used

instead of the Med AE as a measure of model performance in Figure 30. Here
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again, the solid points show the mean of the MAE values divided by the

range of the measured melt values versus the number of index points used,
and the solid line is a LOESS regression line spanning 40% of these points.
The triangles represent the mean of the MAE values for the top 34 out of 100
realizations having the highest spread, and the dotted line is the LOESS
regression line through these points. These plots conform to expectations
much better than the plots in Figure 29, due to the use of the mean rather
than median error as a measure of model performance.

Figure 30 shows that the improvement in modeling accuracy gained
by using additional points only marginally increases after about five points.
This figure also shows that if the index points were chosen to have a high
degree of variability or “spread,” four index points were sufficient to
accurately model the melt for these two time periods.

Figure 31 shows the same analysis for the synthetic data (using MAE
again as a measure of modeling performance). The top graph (April 5-7)
shows a continuing, significant increase in modeling accuracy with the use of
more index points up to about eight index points. However, it also shows
that if the points are chosen to have a high degree of “spread,” perhaps only
five are needed to produce reliable results for this time period. The bottom
graph (April 17-19) shows that perhaps only three or four well selected

index points are necessary to reliably calibrate the TopoFECS model for
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this second time period.

From this analysis, it appears that between four and six well chosen
index points are required to obtain optimal results using the TopoFECS
model. Obviously, if the measurements are not very accurate, more index

points will be needed, though, to achieve a reliable regression.

Effect of Weather Conditions on Model Accuracy

In this analysis, 36 new points were randomly generated within the
same topographic ranges used to generate the 200 points in the “Initial
Model Testing” section. The UEB model was used to simulate the
accumulation and ablation of the snow at these points, and the resulting
simulated SWE at each point was recorded at 24-hour intervals and used to
determine the effect of cloud cover on the TopoFECS model. The 168 days
during the snow accumulation/ablation season were divided into two
categories: cloudy and clear days. Days in which the available solar
radiation values were less than half of the clear-sky radiation were
considered cloudy days, while the rest were lumped together as clear days.
A global regression on all 36 points was used to estimate the a(t), B(t), and
y(t) parameters, and then these parameters were used to calculate estimates
of melt at each of the 36 points at daily time steps throughout the snow

season. Finally, the TopoFECS versus UEB modeled melt at each point was
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compared for cloudy and clear days separately, and NS values for each of the
36 sites were computed. These are plotted in Figure 32. The +'s represent
the NS values for each point for the cloudy days, and the triangles represent
the NS values for each point for the clear days. As can be seen, the estimates
for the cloudy days are consistently better than those for the clear-sky days.
There are two possible reasons for this observation:
1. The dependence of melt (as simulated by the UEB model) upon radiation
is nonlinear. For days with larger radiation, the linear TopoFECS model

has relatively more difficulty fitting the data.
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2. The range of radiation and consequently melt values is greater for clear
days than for cloudy days. The TopoFECS regression may be relatively

worse for larger ranges in melt values.

Effect of Spatial Scale of Application on Model Accuracy

In this section, the spatial scale of application for the model is defined
as the spatial range over which the same a(t), B(t), and y(t) parameters may
be applied with an expectation of reasonable results. As the spatial scale of
application increases, there will be an associated decrease in predictive
accuracy. For example, if only one value for each of the af(t), B(t), and y(t)
parameters were used to simulate melt across the entire Rocky Mountain
Range, one could not expect to obtain reasonable melt estimates everywhere.
Both the elevation differences as well as the weather differences across the
mountain range imply that several very different melt conditions probably
exist within that large area.

There are two distinct spatial scales that are addressed in this section:
the vertical scale and the horizontal scale. The vertical scale deals with the
effect that elevation has on melt energy, while the horizontal scale deals with
how weather changes with lateral distance across a basin. These two scale

issues are discussed in detail next.
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Vertical scale

The TopoFECS model’s linear regression of melt against elevation will
lose accuracy with increasing ranges of elevation, since melt is not truly a
linear function of elevation. However, reasonable results can be obtained
over small elevation ranges, such as those obtained for the Smithfield Dry
Canyon data, which had an elevation range of 366 meters. In watersheds
with greater relief, the model’s accuracy can be maintained by dividing the
watershed into elevation zones. How great can the range in elevation be
within each zone, though, if the model is still to obtain reasonable results?

In order to explore the tradeoff between elevation range and model
accuracy, data from the same 200 points that were synthetically generated for
the Initial Model Testing section was used. Only the days between April 5-
April 21 were considered: the same time period modeled to produce Figure
6. These 200 points were divided into 75 meter zones for the first trial, then
150 meter zones for the next, 225 meter zones for the next, and so on up to
the last trial with one zone covering the whole 1500 meter range of data
points. For each trial, the TopoFECS model was applied to each elevation
zone using a global regression on all of the points within the zone to
determine the a(t), f(t), and y(t) parameters. The mean absolute error for all
of the points was calculated for each trial, and the results are plotted against

their respective elevation zone size in Figure 33.



9

0.012

0.010

mean absolute error, meters of swe

0.008

o ¢ ; S o & B ) 5 5 B
'R EEEEEREEEEREEEEENEEEE

elgvation zone size, in meters

Figure 33.  Effect of subdividing basin into multiple

elevation zones.

Though this plot shows an obvious decrease in accuracy associated
with lumping small elevation zones together into larger elevation zones, this
does not mean that one should necessarily divide a basin into extremely
small zones to obtain reasonable results. For each elevation zone, at least
three measurements must be made to calculate the a(t), B(t), and y(t)
parameters for the zone. This becomes impractical quickly with more and
more elevation zones. However, the magnitude of the errors obtained using

the entire 1500 meters as one elevation zone was relatively small (averaging
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0125 meters over a 2-day time step) and acceptable for most applications.
Upon comparison of the accuracy of the model results using only one
elevation zone with the accuracy of using the model on the field data from
Smithfield Dry Canyon (which has a much smaller elevation zone size; only
366 meters), it becomes apparent that the measurement error of real data far
surpasses and overshadows the error incurred by not subdividing a basin
into smaller elevation zones. Therefore, dividing a basin into different
elevation zones is probably not worthwhile unless one is trying to model an
extremely high-relief watershed where the summits are exposed to weather

regimes that are markedly different from the weather in the valleys.

Horizontal scale

As the area of the terrain to be modeled grows, the weather across the
terrain will have greater and greater variability, causing the model to err.
The horizontal scale of application for the TopoFECS model will therefore be
a function of the characteristic scale of variability of the weather. This will
vary according to location. In order to use the TopoFECS model in basins
larger than the characteristic scale of variability of the weather, the basin
must be decomposed into subbasins that are modeled separately with
different a(t), B(t), and y(t) parameters. None of the available data sets are

extensive enough to explore this horizontal scaling issue.
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Effect of Time Step Size on Model Accuracy

In order to examine the impact of different time step sizes on the
model results, the TopoFECS model was used to estimate synthetic melt data
at differing time steps, ranging from hourly to weekly. The data from the
same 36 points used in the section entitled “Effect of Weather Conditions on
Model Accuracy” were used in this analysis. Five index points with a large
range of radiation and elevation values (large “spread” in radiation-elevation
space) were chosen to calibrate the TopoFECS model. Once the TopoFECS
estimates were obtained, the median absolute error (Med AE) between the
UEB-generated results and the TopoFECS estimates was calculated for each
time step length using all 36 points during the melt period from April 5-21.
Figure 34 shows these MedAE values divided by the range of the measured
melt during the time steps plotted versus the number of hours used in the
time step.

As can be seen, the TopoFECS model performed relatively poorly for
all time steps that were not multiples of 24 hours. With all time steps that |
were in multiples of 24 hours, though, the model appears to perform
uniformly well. A possible explanation for this phenomenon lies in the
TopoFECS model’s omission of a “cold-content” in the snowpack. The “cold-
content” is the amount of energy required to raise the temperature of the

snowpack up to an isothermal 0°C. For example, after a cold night, all of the
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Figure 34.  Sensitivity of model accuracy to timestep size.

points in the watershed that receive light early in the day will simply be
warming up rather than melting. They will warm up faster than the other
points in the watershed because of the sunlight, but this is not accounted for
in the TopoFECS model. Later in the afternoon, after these points are in the
shadows, they may start melting sooner than other points that are just
coming into the bright sunlight. In this instance, the TopoFECS model
would calculate melt as being negatively related to radiation. Measurements
taken at any interval less than one day are susceptible to this problem. The
model must aggregate all of the melt energies for an entire diurnal cycle in

order to obtain robust results.
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It has been suggested that perhaps the a(t), B(t), and y(t) terms evolve

slowly enough that the same values may be used from one time period to the
next over an extended period of time. If this is true, then one needs only to
sample infrequently to obtain accurate, distributed, daily melt predictions
with the TopoFECS model. However, results from the UEB-generated data
indicate that these parameters vary markedly from time step to time step.
Figure 35 shows the values of each parameter for each 48-hour time step.

If the parameters were not altered from time step to time step, the model
would predict the very same melt at every time step, regardless of the
weather. The primary goal of a melt model is to determine how the melt rate
changes with time. Therefore, in order to meet this goal, the a(t), B(t), and
¥(t) terms need to be recalibrated every time step. Based on findings from
Figure 34, the recommended length of this time step is 24 hours in order to
obtain accurate calibrations with sufficient frequency to provide input for a

real-time streamflow model.
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CHAPTER V

GUIDELINES FOR USING THE TOPOFECS MODEL

In Chapter IV, the TopoFECS model was demonstrated to be an
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accurate, efficient method for predicting the spatial distribution of snowrmelt

in high-relief, mountainous watersheds. However, before applying the
model to a watershed, several questions must be considered in order to
achieve reliable results. These are summarized in the following list:
1. Is a digital elevation model (DEM) available for the watershed?
2. Does the watershed have many forested areas?
3. How many index points are needed, and where should they be
located?

A digital elevation model, or DEM, of the watershed is essential for
the automation of the TopoFECS model. Because the model relies on
topographic information (slope, aspect, and elevation) to distribute melt
estimates, this must be readily available in digital form. Also, a DEM with
fine resolution is preferred to one with coarser resolution, as the finer
resolution would be able to distinguish smaller topographic features.
However, using a DEM with finer resolution also means that it will take
longer for the model to run, since there will be more points to calculate.

Forest cover plays a large role in snowmelt, since it affects all of the

terms in the energy balance for snowmelt (equation 4). However, forest
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cover is not yet accounted for in the TopoFECS model. In the following

chapter, recommendations are made for how to deal with forest cover, but
this is untested. All of the research to date has only been performed in open
reaches of watersheds with no trees, and so the TopoFECS model is not
recommended for use in forested areas.

As shown in the section entitled “Selection of Index Points,” the
locations of the index points play a large role in determining the accuracy of
the model results. It was demonstrated that the use of index points with a
large spread in radiation-elevation space increases the accuracy of the model
estimates. Therefore, in order to select the optimal index points, the
incoming radiation values midway through the melt season should be
calculated for each point in the watershed, and these values should be
plotted against the respective elevations of each point. The index points
should be chosen from the points that fall on or near the covex hull of this
scatter of points, and they should be chosen so that they encompass a
maximum amount of area within this radiation-elevation space.

The section “Selection of Index Points” also shows that the number of
index points used also plays an important role in the accuracy of the model
results. The accuracy of the measurements will probably dictate, to a large
degree, the number of index points that need to be used. With perfect

measurements, only three index points are necessary, but this number grows
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as the data set becomes noisier. Another factor controlling the number of

index points needed for modeling larger watersheds is the characteristic
scale of climatic variability in the region. This issue has not been carefully
examined in this thesis, but it is one that will need to be addressed in the
future if the model is to be applied to large basins. Economics is the final
factor that will limit the number of index points that may be measured.
Obviously, if melt collectors were extremely inexpensive, one could use
hundreds of them and obtain wonderful results. However, most projects
will only be able to set aside a small portion of the budget for buying,

installing, and maintaining the measurement devices.
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CHAPTER VI

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

The snowmelt modeling literature points to the need for a model that
is both simple enough to use in practical applications for melt estimations
over large areas, as well as rigorous enough to capture the fundamental
physics of melt and to provide spatially explicit estimations. This thesis has
described the TopoFECS model, which is a new method for estimating the
spatial distribution of snowmelt based on point measurements and
topography. Chapter Il explained how the model could be applied in a
practical setting to estimate the spatial distribution of melt in a watershed.
In Chapter [II the model was derived from the theoretical physical equations
governing snowmelt and was shown to have merit as a physically accurate
model. The model was tested against three data sets in Chapter IV; a
synthetically-generated data set, a noisy data set from Upper Sheep Creek,
and a relatively good data set acquired from Smithfield Dry Canyon. The
model performed very well with two of these three sets of data. The model’s
sensitivity to index point selection, weather conditions, spatial scale, and
temporal scale were examined in Chapter IV. Finally, Chapter V gave

explicit guidelines for applying the TopoFECS model in a practical setting.
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Conclusions

The results from Chapter IV indicate that the TopoFECS model can be
an accurate, efficient way to predict the spatial distribution of snowmelt in a
rugged, mountainous watershed. Because of the model’s simplicity and
accuracy, it could replace more traditional methods for modeling snowmelt
in many applications. The advantages of the TopoFECS model include:

1. simple data requirements,

2. methodology that is easily understandable to an operator,

3. computationally efficient algorithm for rapid simulations of
large basins,

4. no need for prior calibration of basin-specific parameters,

5. realistic spatial melt simulations,

6. accurate melt estimations.

Though energy balance models will always be required for some
applications, there are many practical uses for the simpler TopoFECS model.
Flood forecasters as well as reservoir operators, who traditionally use
simpler lumped index models, would benefit from the improved accuracy
over the entire range of possible weather conditions provided by a more
physically realistic model. Researchers could employ the model to
efficiently and accurately calculate the spatial distribution of water inputs to

large watersheds. This would be useful for basin response modeling,
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contaminant transport modeling, erosion modeling, etc. Developing

countries with limited finances could benefit greatly from a model that
required simple data, little skill from the operator, and no prior calibration of

basin-specific parameters.

Recommendations

Further research is recommended in the following areas:

1. Incorporating the effects of forest cover. The effect of forest cover is
not currently accounted for in the TopoFECS model. Because forest
cover has a great impact on the energy exchange processes causing
melt, the model is not yet recommended for use in forested areas.
One way to incorporate forested sections of land that could be
explored is the use of two sets of index points: one set of points with
heavy forest cover on them, and another set of index points located in
clearings. The a(t), B(t), and y(t) parameters obtained from the
forested points would be used to model other heavily forested parts of
the watershed, while the parameters obtained from the index points
located in clearings would be used to model clearings. Areas with
mild to moderate forest cover would use parameters that were
interpolated between the two extremes. A drawback to this approach

is that it entails six unknowns to be calculated each time, rather than



103
three; this doubles the number of index points required. An

alternative would be to extend the model to include a measure of
vegetative density as a fourth predictor, in addition to elevation and
radiation. These ideas need to be investigated further.

. Using automated melt collectors. Manual collection of melt data at
remote sites at a regular frequency is obviously impractical for real-
time melt predictions. Therefore, the use of melt collectors should be
explored to make this model feasible for practical applications. The
cost, accuracy, and reliability of the automated collectors are all
factors that determine whether or not they could be suitable for
measuring melt at index sites for use in the TopoFECS model. Of
course, it is important for the melt collectors to be on sloping sites
over a range of elevations and aspects. This might create some
difficulty in obtaining reliable measurements, since melt collectors are
typically installed in level areas. Small plot runoff data may be easier
to measure than melt data. This has infiltration losses, but may still be
useful. A plastic sheet covering the ground may solve this infiltration
problem. Another possible approach to measuring melt is to use sonic
depth probes, installed above the surface of the snow. All of these
options must be explored in order to determine the best way to collect

the melt data for the TopoFECS model in a practical application.
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3. Determining the spatial scale of climatic variability. In order to model

a basin that is large enough to experience different weather regimes
simultaneously in different regions within the basin, different values
for the a(t), B(t), and y(t) parameters are needed for each differing
region. Therefore, the basin must be equipped with enough
measurement sites to have sufficient index points to make reliable
estimates of the a(t), B(t), and y(t) parameters for each region. The
number of measurement sites in a basin is therefore a function of the
spatial scale of climatic variability of the region to be modeled. This
must be determined in order to properly select the index points.

4. Determining the applicability of remotely sensed data. Though
equation 18 provides a method for modeling the accumulation of
snow, it is overly simplified and cannot model the erratic snowfall
and drifting patterns found in complex terrain. Therefore, in order to
correctly predict melt runoff from a basin, the model must, at a
minimum, be supplied with current maps of snow-covered area.
Otherwise, it will be susceptible to predictions of melt at locations
where snow no longer remains. If available, other information such as
remotely sensed maps of SWE should be incorporated into the model.

This will be an area of much future research.
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Appendix A

Smithfield Dry Canyon Data

This appendix gives the raw data obtained from Smithfield Dry
Canyon. Chapter 4 describes the data collection process. Each of the stakes
used was marked in inches, starting from the top of the stake and continuing
to the bottom. The total height from the ground to the top of each stake was
recorded after the snow melted, since there was no way to tell how far into
the ground the stake penetrated when the snow was still there. Table 4 gives
this distance for each stake. Tables 5, 6, and 7 give the field measurements
recorded on March 9, 13, and 19, respectively. These measurements include
stake readings and snow tube readings which were used to determine the
average SWE still remaining at each site. Though measurements were also
made on many different earlier dates, significant melt did not occur until
March 9, and so these three dates (representing two melt periods) are the
only ones presented. One more measurement was obtained after March 19,
but so few sites had snow remaining that the results were not worth

showing.
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Table 3. Topographic parameters for measurement sites in

Site

SOV U WN -

w NN R b= b e D o et g e
goggﬁgmﬁwﬁﬁcom\]mmpuw

Smithfield Dry Canyon
Aspect

Slope  (from N) Elevation Latitude Longitude
20° 295° 1646 m  41°49.77’N  111°4701' W
30° 290° 1753 m  41°4991'N  111°46.86' W
36° 304° 1753 m  41°4991'N  111°46.86' W
5° 310° 1753 m  41°4994'N 111°46.78' W
18° 0° 1753 m  41°4994'N 111°46.78' W
16° 310° 1753 m  41°4994'N 111°46.78' W
38° 340° 1743 m  41°4994'N  111°46.78' W
30° 346° 1743m  41°4994'N 111°46.78' W
22° 300° NA 41°50.02' N 111°46.62' W
31° 312° 1829 m  41°50.02' N 111°46.62° W

24.5° 291° 1829 m  41°50.02'N 111°46.62° W
30° 300° 1844 m  41°50.02’N 111°46.62' W
31° 276° 1852 m  41°50.00' N 111°4657 W
19° 280° 1859 m  41°50.00' N 111°46.57 W
30° 285° 1829 m  41°50.00' N 111°4657 W
15° 158° 1867 m  41°50.01' N 111°46.57 W
15° 178° 1867 m  41°50.01' N 111°46.57' W
6° 174° 1867 m  41°50.01' N 111°4657 W
22° 265° 1890m  41°50.01' N 111°4657' W
31° 245° 1897 m  41°50.01'N 111°4657 W
28° 218° 1958 m  41°50.20' N  111°46.52' W
26° 278° 1958 m  41°50.20' N  111°46.52' W
28° 128° NA NA NA
16° 160° 1753 m  41°4994'N 111°4681' W
0° o° 1966 m  41°50.26' N 111°4647' W
20° 140° 1966 m  41°5026"'N  111°4647' W
22° 298° 1966 m  41°50.26' N 111°4647 W
26° 268° 1966 m  41°50.26' N  111°46.47' W
26° 320° 1966 m  41°50.26' N 111°4647' W
26° 198° 2012m  41°5040'N 111°46.48' W
15° 164° NA NA NA
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Table 4. Total height (in inches) aboveground of each stake
used in Smithfield Dry Canyon

Site Stake 1 Stake 2 Stake 3

1 23 22 21
2 24 23 225
3 21.5 22 23
4 24 24.5 23
5 19 17 22
6 24 24 25
7 22 22 15
8 24 23 21.5
9 NA NA NA
10 21 23 16
11 23 19.5 20
12 22 22 20.5
13 325 23 20.5
14 32 21 18.5
15 30 20 22
16 20.5 21.5 32
17 32 33 33.5
18 33 32 32
19 225 32 20
20 28.5 33.5 27
21 30 32.5 22
22 32.5 31 215
23 NA NA NA
24 45.5 45 42
25 45.5 45.5 45.5
26 445 46.5 45
27 45 48 44
28 44 45 41
29 45.5 44.5 45
30 45.5 44 45.5
31 NA NA NA
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Table 5. Measured distance between tops of stakes and snow surface, and
snow tube measurements for density calculations: Smithfield
Dry Canyon, March 9, 1997

1st Tube 2nd Tube
Ist Tube Weight 2nd Tube Weight Stake  Stake  Stake
Depth (inches Depth (inches Depth1l Depth2 Depth3
Site (inches) of SWE) (inches) of SWE) (inches) (inches) (inches)

1 15 5.9 14 4.8 13 8 85
2 9 3.1 NA NA 16 15.5 11
3 8 2.5 12 438 9 11 10
4 13.7 4.7 13.5 4.7 NA 10 10.5
5 13 3.7 NA NA 3 1.8 6.8
6 12 4.7 NA NA 11 10.6 10
7 15 3.5 16 4.7 4 5 covered
8 19.5 5.5 NA NA 6 1.5 1
9 19 5.2 NA NA 6 1.25 9.7
10 16.3 44 NA NA 52 9.5 covered
11 14 4.2 NA NA 9 5.6 3.25
12 15 4.5 NA NA 2.5 35 0.75
13 15 4.2 NA NA 18.5 10 6
14 15 3.8 15 45 18 3.25 8
15 13.5 3.5 NA NA 19 9 NA
16 23 6.8 NA NA 3 2.5 10.5
17 21 6.6 NA NA 9 10 14
18 19.5 5.7 NA NA 15 10 11
19 9 3.2 12 3.7 9 19 8
20 10 34 10 32 18 22 17
21 11 3.6 16 5.3 17.5 15 6
22 25 8.1 23 7.6 75 6 covered
23 12 3.3 12 3.6 10 95 115
24 NA NA NA NA NA NA NA
25 31 11 31 112 15 15.5 13
26 20 7 21 7 24.5 24 25
27 24 7.3 21 6.6 22.5 28 19.5
28 26 7.6 21 7.4 23.2 21.5 18
29 27 7.6 28 7.7 17 18 20.5
30 22 7.1 19.5 7 24 24 24
31 15 4.6 15 52 10 10.5 10




Table 6. Measured distance between tops of stakes and snow surface, and

snow tube measurements for density calculations: Smithfield

(inches Depth1l Depth2 Depth3
Site (inches) of SWE) (inches) of SWE) (inches) (inches) (inches)

Stake

Stake

Stake

Dry Canyon, March 13, 1997
1st Tube 2nd Tube
Ist Tube Weight 2nd Tube Weight
Depth (inches Depth
7 2.5 8 35
5 2 6 2.2
6 2.2 6 25
7 3 9 2.7
10.5 3.7 12 4.3
9 3.6 9 33
13 3.8 10 3.2
19 52 15 5
11 3.5 14 3.6
9 3.8 9.5 3.5
7 2.8 8 2.7
12 4.4 12 4.1
9 3 10 2.6
8 2 6 17
NA NA NA NA
13 52 14.5 5
13 4.7 13 4.7
16 6.2 15 54
NA NA NA NA
NA NA NA NA
8 3.2 8 3
17 5.6 16 5.4
28 104 27 9
14 4.8 15 52
16.5 4.1 15 55
15 6.6 16 6.3
23 7.3 20 6.5
17 6.1 13 4.1

NA
NA
16
18
75
16
9
10.5
12.8
10.5
15.75
8.5
25
24
26.5
12.5
18.5
21.8
27
NA
26.5
14.5
22
31.7
28.7
295
22
32

16
NA
16.25
12
6.7
16.5
10
6.5
14.7
15
11.75
10.3
17
155
16.5
12
17
17
18
32
24
12.7
218
32.7
333
28
232
32

155
16.5
14
17.5
11.5
16
4.5
6
15.2
5
9.8
8
12
10
NA
18.2
2238
18.75
15.5
26
15
5
20
33
25.5
26
26
32
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Table 7. Measured distance between tops of stakes and snow surface, and

1

5

7

8

9

10
11
12
16
17
18
25
26
27
28
29
30

snow tube measurements for density calculations: Smithfield
Dry Canyon, March 19, 1997

2nd Tube

(inches Depth1 Depth2 Depth3
Site (inches) of SWE) (inches) of SWE) (inches) (inches) (inches)

Stake

Stake

Stake

NA
22
2.3
4.5
3.1
2.7
NA
29

3

3

3
9.4
3.1
53

51
64

1st Tube
1st Tube Weight 2nd Tube Weight
Depth (inches Depth
NA NA NA
8 2.6 5
6 2.6 5
12 4.7 12
8 3 7.5
6 2.3 8
NA NA NA
7 2.6 7
9 3.6 7
9 3.6 7
9 3.6 7
22 9.2 22
6 2.7 7
13 4.9 13
135 5.5 12.5
18 72 16
11 4 10

4.3

NA
13
14.3
14
NA
15.5
NA
13.2
NA
26
28
27
39
32
33.6
25.7
38

22+/-2 20+/-2
11 155
16.5 10
11 10.5
19.5 21
NA 10
18 15.3
15.5 13
NA 24
23 NA
24 27
27.2 26
40 40
38 30.5
22.6 NA
27.5 29

37

38
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Table 8. Gridded values of snow water equivalence (in inches),
measured at Upper Sheep Creek on March 25, 1986

N
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Upper Sheep Creek Data
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Table 9. Gridded values of snow water equivalence (in inches),

measured at Upper Sheep Creek on April 9, 1986
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Table 10. Gridded values of melt (in inches), occurring between
March 25 and April 9, 1986, calculated by subtracting SWE
measured on April 9 from SWE measured on March 25

C

D

oy

I

]

117

K L M N O

o

QO OO OOO

OO O OO OO0OO0OO0ODO0OOO0O

OO O OO OO OO OO OO OO0 O0ODLCDOODODOOO

eNeooleolaeoeoaooleNoloNoNoNeNoNoeNoNeNoNoNoNol Fes)

oNeololololeoelelooNoNeNoeloloNoNoNoeNeNoNoeNoNoNoeNe] L))

O o Ww Wwoll)

[ W
OOOOOOOOOOOON

R oo @ 2 O
N N oo

OO OO

(=)
oo

N
.U"I'Ulo"h’ho\.

25

(2} o

1.5

9.5
73

28
22
6.5
1.5

oo

12
11
1.2

1.5

O N

7.2
22
4.7

5.2

P —

6.5

3.8
8.5
2.5

—
co Bvo

1.5

1.7

6.5

ﬁoooooww

4.2

5.7
52
-9.9

m) O NG N 0
_ L= o\ W; Mo ASIE )]

Mo oCcocoocoooN

o O

9.2
14
8.3
7.1
5.4
9.3
8.5
9.5

o ON

[N

COOO PR OOOOOO0O

COO0OOOOOO




VOO O =

Table 11. Gridded values of snow water equivalence (in inches),
measured at Upper Sheep Creek on April 30, 1993
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B C D E F G H I J K L M N O
0 73 0
0O 0 0 0 0 29
0 0 0 54 0 O
0O 0 0 0 0 0 O
o 06 0 0 0 0 0 0 O
6 0 0 0 0O 0 0 37 0 O
6 0 0 0 0 0 0 0 13 49 O
6o 0 0 0 0 0 O 0 0 5 O
6 0 0 0 0 O O 0 17 0 O
6 0 0 0 0 0 0 0 0 o0 o
0 0 0 0 0 O 0 0 63 0 O
6 0 0 0 O 0O O O 21 24 0 O
c 0 0 0 0 O O 0 3 14 0 O
0 0 0 0 O o0 65 0 8 5 0 0
c 0 0 0 0 O 0 17 25 74 37 0 O
6 0 0 0 O 0 13 16 53 0 0 O
0 0 0 0 16 11 11 0 34 0 O
0 0 0 0 23 18 0 0 0 O
0 0 0 0 13 21 0 0 O
0 0 0 0 26 26 11 0 O
0 0 O 0 33 50 24 0 0
0 0 0 0 47 20 59 0 o0
0 0 0 0 0 14 18 40 O
0 0 0 0 o0 18 74 0
0 0 0 0 0 25 76 0
0 0 0 57 9 0
0 0 0 57 20 0O
0 12 99 0
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measured at Upper Sheep Creek on May 13, 1993

Table 12. Gridded values of snow water equivalence (in inches),
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Table 13. Gridded values of melt (in inches) occurring between
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April 30 and May 13, 1993, calculated by subtracting SWE

measured on May 13 from SWE measured on April 30

B C D E F G H I J K L M N O
0 73 0
0 0 0 0 0. 29
0 0 0 54 0 O
0 0 0 0 0 0 O
o 0 0 0 0 0 0 o0 O
o 0 0 0 0 0.0 37 0 o
0 0 0 0 0 O 0 0 13 49 0
o 0 0 0 0 O O 0 o0 5 0
o 0 0 0 0 O 0 0 17 0 O
6o 0 0 0 0 O 0 0 0 o0 o
6o 0 0 0 0 O 0 0 2 0 o0
o 0 0 0 0 0 O 0 12 19 0 0
o 0 0 0 0 O O 0 13 14 0 O
6 0 0 0 O 0 65 0 8 5 0 o0
0o 0 0 0 O O 0 17 25 11 37 0 O
o 0 0 0 0 0 13 16 12 0 0 0O
6 0 0 O 16 11 11 0 15 0 O
0o 0 0 0 12 14 0 0 0 O
o 0 0 0 13 14 0 0 O
0 0 0 0 9 -21 11 0O O
0 0 0O 0 15 86 19 0 O
0O 0 0 0 47 55 12 0 O
0 0 0 0O 0 13 98 58 0O
0 0 0 0 0 10 17 O
0 0 0 0 O 13 16 O
0 0 0 57 15 0
0O 0 0 9 -11 0
0 97 98 0






