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ABSTRACT

Nonparametric Approaches for Simulation of Streamflow Sequences

by

Ashish Sharma, Doctor of Philosophy
Utah State University, 1996

Major Professor: Dr. David G. Tarboton
Department: Civil and Environmental Engineering

This work describes strategies for simulation of synthetic streamflow sequences
using nonparametric methods for density estimation. Nearest-neighbor and kernel density
estimation methods are used. Nonparametric methods use the observed data to estimate
the probability densities required for simulation. Use of these methods enables proper
representation of dependence (linear or nonlinear), asymmetry, and multimodality in the
probability density of streamflow. These features are not easily modeled by existing
parametric streamflow simulation methods. The nonparametric models are applied to
synthetic data with known statistical attributes and to actual monthly streamflow data sets.
Comparisons with popular parametric models indicate that the nonparametric simulations
reproduce not only the linear attributes modeled by parametric stochastic models, but also
a broader set of properties based on the additional distributional information contained in

the nonparametric probability estimates of streamflow.
(224 pages)
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CHAPTER 1
GENERAL INTRODUCTION

Problem Statement

Engineers have always recognized the variability and uncertainty of hydrologic
inputs in designing water resources systems. Water supply and management agencies
often work in the face of this uncertainty and need carefully synthesized streamflows to
properly plan reservoir operations and system expansions to meet future demands. To
develop optimal operating rules and control strategies for complex hydrologic systems,
one requires synthetic flows that reproduce important statistical properties of the observed
streamflow record.

Streamflow simulation has traditionally been performed using linear autoregressive
moving average (ARMA) models [Bras and Rodriguez-Iturbe, 1985]. These models
treat future flows as a function of a finite set of past flows. A joint probability distribution
characterizes the interdependence of the flow variables. In the case of ARMA models,
this distribution is assumed to be parametric, i.e., defined explicitly by a few parameters
(that can be estimated using the method of moments or maximum likelihood from the
historical time series). Such a characterization limits the synthetic flows from representing
“unusual” features such as nonstationarities (in mean and variance), nonlinearities (in the
dependence structure of flow variables), or state dependence (for example, between low
flows and succeeding high flows) that may be present in the historical data.

One way of representing such features in the synthetic flow samples is to
approximate the true (unknown) probability distribution of flows. This can be done using
nonparametric density estimation methods. Nonparametric methods use the historical data

to estimate the probability densities needed for simulation. Nonparametric methods are
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designed to remain true to the data and are consistent, i.e., they converge to a broad class
of possible underlying distributions as the sample size is increased. Although extensively
studied in the statistics literature, they have seen limited applications in hydrology.

This study used nonparametric methods to develop models for synthetic streamflow
generation. Nearest-neighbor and kernel methods were used to develop the models.
Approaches for streamflow simulation based on conditioning on past occurrences as well
as disaggregation of aggregate (annual) flows to disaggregate (tributary or seasonal)
flows were developed. These models are a special class of autoregressive models since
flow at the current time step is modeled as a function of prior flows. The dependence
between the current and prior flows is characterized by a joint probability distribution,
which is estimated nonparametrically, using the available historical record. This marks a
deviation from the traditional parametric approaches, which impose an assumed
distribution and a rigid form of dependence on the model simulations. The use of
nonparametric methods results in simulations that are representative of the historical
record. This, in turn, is responsible for an accurate representation of hydrologically
relevant features such as storage-yield relations or drought-related characteristics in the

simulated time series.

Objectives

This work focused on the application of nonparametric methods to synthetic
streamflow simulation. The underlying objective of this study was to develop
nonparametric alternatives to parametric stochastic models such as the ARMA, Fractional
Gaussian Noise (FGN) [Mandelbrot and van Ness, 1968], or Broken Line processes
[Curry and Bras, 1978], so as to free the modeler from any assumptions as to the form
of the probability density function (e.g., Gaussian) or the dependence (e.g., linear or

nonlinear) between flows. The specific objectives of this study were:



(1) Use nonparametric methods to develop approaches for simulation of streamflow
for a given site, at annual or seasonal time scales. This problem is addressed in a
generalized autoregressive framework with flow at time t being modeled as a
nonparametric function (estimated based on joint and conditional density estimates) of a
finite set of prior flows.

(2) Develop a nonparametric model to disaggregate aggregate (annual or main
stream) flows to seasonal or tributary flows. Disaggregation models provide the ability to
generate multiseason and multisite streamflow sequences that maintain the proper
interdependence between aggregate and disaggregate flows, thus allowing a model to
span scales in space and time. Such a dependence is modeled based on nonparametrically
estimated joint probability densities of the aggregate and disaggregate flow variables.

(3) Study the statistical attributes and applicability of nonparametric methods to

small samples of sizes typically encountered in hydrology.

Outline

This study is presented in a multiple-paper format and describes the investigations
of the objectives described in the previous section. This work is divided into six chapters,
including the introductory and the conclusion chapters. An outline of the different
chapters that follow is given here.

Chapter 2 details a nonparametric model for synthetic streamflow simulation using
nearest-neighbor methods. This model is a “bootstrap,” i.e., it resamples the data with
replacement from the historical streamflow time series. The model preserves linear and
nonlinear dependence between flows and admits features such as bimodality in the

probability density and state dependence (expressed in this study as the dependence of
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correlation on flow magnitude, see appendix A) in its simulations. The model is applied
to synthetic data with known statistical attributes and to monthly streamflow.

Chapter 3 discusses a nonparametric model for streamflow simulation that uses
kernel density estimation techniques. This model uses a kemel estimate of the joint
distribution of flows to simulate new realizations. A general multiple order dependence is
admitted in the model, though applications are constrained to the simplest (order one)
case. Suggestions for dealing with boundary problems (negative realizations) are
included. The model is tested and applied to data from linear and nonlinear models and to
monthly streamflows.

Chapter 4 describes a nonparametric approach for disaggregating aggregate annual
flows to seasonal or tributary components. The kernel density estimation methodology is
used to develop the model. The model is applied to synthetic data from a known
nonlinear model and also to disaggregate annual flows to monthly flows. The order one
nonparametric model described in chapter 3 is used to simulate the annual streamflows
that drive this disaggregation model.

Chapter 5 discusses the kernel density estimation methodology used in the models
described in chapters 3 and 4. A study of the efficiency of methods to estimate the
parameters of a kernel density estimate is performed. Results from this study were used
to choose the kernel density estimators in chapters 3 and 4.

The models in chapters 2, 3, and 4 are useful nonparametric alternatives to existing
models for streamflow simulation. A brief discussion of each of the models described in

chapters 2, 3, and 4 is presented in chapter 6.
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CHAPTER 2
A NEAREST-NEIGHBOR BOOTSTRAP FOR RESAMPLING

HYDROLOGIC TIME SERIES!

Abstract

A nonparametric method for resampling scalar or vector valued time series is
introduced. Multivariate nearest-neighbor probability density estimation provides the
basis for the resampling scheme developed. The motivation for this work comes from a
desire to preserve the dependence structure of the time series while bootstrapping
(resampling it with replacement). The method is data driven, and is to be preferred when
the investigator is uncomfortable with prior assumptions as to the form (e.g., linear or
nonlinear) of dependence and the form of the probability density function (e.g.,
Gaussian). Such prior assumptions are often made in an ad hoc manner for analyzing
hydrologic data. Connections of the nearest-neighbor bootstrap to Markov processes as
well as its utility in a general Monte Carlo setting are discussed. Applications to
resampling monthly streamflow and some synthetic data are presented. The resampling
method is shown to be effective with time series generated by linear and nonlinear
Autoregressive models. The utility of the method for resampling monthly streamflow
sequences with asymmetric and bimodal marginal probability densities is also

demonstrated.

Introduction

Autoregressive Moving Average (ARMA) models for time series analysis are often

used by hydrologists to generate synthetic streamflow and weather sequences to aid in the

analysis of reservoir and drought management. Hydrologic time series can exhibit the

1Coauthored by Ashish Sharma and Upmanu Lall, Water Resources Research, 32(3),
679-693, 1996, Copyright by the American Geophysical Union.
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following behavior, which can be a problem for linear ARMA models that are commonly
used:

(1) asymmetric and/or multimodal conditional and marginal probability
distributions;

(2) persistent large amplitude variations at irregular time intervals;

(3) amplitude-frequency dependence (e.g., the amplitude of the oscillations
increases as the oscillation period increases);

(4) apparent long memory (this could be related to (b) and/or (c));

(5) nonlinear dependence between x; vs x;_, for some lag 1;

(6) time irreversibility (i.e.,the time series plotted in reverse time is “different” from
the time series in forward time). The physics of most geophysical processes is time
irreversible. Streamflow hydrographs often rise rapidly, and attenuate slowly, leading to
time irreversibility.

Kendall and Dracup [1991] have argued for simple resampling schemes, such as
the index sequential method, for streamflow simulation in place of ARMA models,
suggesting that the ARMA streamflow sequences usually do not “look” like real
streamflow sequences. Some alternatives [ Yakowitz, 1973; Yakowitz, 1979; Schuster
and Yakowitz, 1979; Yakowitz, 1985; Karlsson and Yakowitz, 1987a; 1987b; Smith,
1991; Smith et al., 1992;Tarboton et al., 1993; Yakowitz, 1993 that consider the time
series as the outcome of a Markov process and estimate the requisite probability densities
using nonparametric methods are available. A resampling technique or bootstrap for
scalar or vector valued, stationary, ergodic time series data that recognizes the serial
dependence structure of the time series is presented here. The technique is nonparametric,
i.e., no prior assumptions as to the distributional form of the underlying stochastic

process are made.



The bootstrap [Efron, 1979; Efron and Tibishirani, 1993] is a technique that
prescribes a data resampling strategy using the random mechanism that generated the
data. Its applications for estimating confidence intervals and parameter uncertainty are
well known [ Tasker, 1987; Hardle and Bowman, 1988; Woo, 1989; Zucchini and
Adamson, 1989]. Usually the bootstrap resamples with replacement from the empirical
distribution function of independent, identically distributed data. The contribution of this
chapter is the development of a bootstrap for dependent data that preserves the
dependence in a probabilistic sense. This method should be useful for the Monte Carlo
analysis of a variety of hydrologic design and operation problems where time series data
on one or more interacting variables are available.

The underlying concept of the methodology is introduced through Figure 2-1.
Consider that the serial dependence is limited to the two previous lags, ie., x; depends
on the two prior values x,_ and x;_5. Denote this ordered pair or bi-tuple at a time t by
D;. Let the corresponding succeeding value be denoted by S. Consider the k nearest
neighbors of D; as the k bi-tuples in the time series that are closest in terms of Euclidean
distance to D; . The first three nearest neighbors are marked as D1,D and D3. The
expected value of the forecast S can be estimated as an appropriate weightca average of
the successors x; (marked as 1, 2, and 3, respectively) to these three nearest neighbors.
The weights may depend inversely on the distance between D; and its k nearest neighbors
Dy, Dy, ...Dg. A conditional probability density f(xID;) may be evaluated empirically
using a nearest-neighbor density estimator [Silverman, 1986] with the successors
X1.--Xk. For simulation, the x; can be drawn randomly from one of the k successors to
the Dy, Dy, ...Dy using this estimated conditional density. Here, this operation will be
done by resampling the original data with replacement. Hence the procedure developed is

termed a nearest-neighbor time series bootstrap. In summary, one finds k patterns in the



data that are “similar” to the current pattern, and then operates on their respective
successors to define a local regression, conditional density or resampling.

The nearest-neighbor probability density estimator and its use with Markov
processes is reviewed in the next section. The resampling algorithm is described next.

Applications to synthetic and streamflow data are then presented.

Background

It is natural to pursue nonparametric estimation of probability densities and
regression functions through weighted local averages of the target function. This is the
foundation for nearest-neighbor methods. The recognition of the nonlinearity of the
underlying dynamics of geophysical processes, gains in computational ability, and the
availability of large data sets have spurred the growth of the nonparametric literature. The
reader is referred to Silverman [1986], Eubank [1988], Hardle [1989, 1990], and
Scott [1992] for accessible monographs. Gydrfi et al. [1989] provide a theoretical
account that is relevant for time series analysis. Lall [1995] surveys hydrologic
applications. For time series analysis, a moving block bootstrap (MBB) was presented
by Kunsch [1989]. Here a block of m observations is resampled with replacement as
opposed to a single observation in the bootstrap. Serial dependence is preserved within,
but not across a block. The block length m determines the order of the serial dependence
that can be preserved. Objective procedures for the selection of the block length m are
evolving. Strategies for conditioning the MBB on other processes (e.g., runoff on
rainfall) are not obvious. Our investigations indicated that the MBB may not be able to

reproduce the sample statistics as well as nearest-neighbor bootstrap presented here.
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The k nearest-neighbor (k-nn) density estimator is defined as [Silverman, 1986]:

k/n k/n @1

v (%) = V. (x) - c,t M (x)

where k is the number of nearest neighbors considered, d is the dimension of the space,

an
)s

cd is the volume of a unit sphere in d dimensions (¢1=2, cp=mr, c3=4n/3..., ¢4 =—"1-(1;,2+1)

r(x) is the Euclidean distance to the kth nearest data point, and V| (x) is the volume of a
d-dimensional sphere of radius ry(x).

This estimator is readily understood by observing that for a sample of size n, we
expect approximately {n f(x) Vi (x)} observations to lie in the volume Vk(x). Equating
this to the number observed, i.e., k, completes the definition.

A generalized nearest-neighbor density estimator [Silverman, 1986] defined in
(2.2) can improve the tail behavior of the nearest-neighbor density estimator by using a

monotonically and possibly rapidly decreasing smooth kemnel function.

fne(X) = —— iK(""‘i) : 22)

fgd (x)n i3 r(x)

The “smoothing” parameter is the number of neighbors used, k, and the tail
behavior is determined by the kernel K(t). The kemel has the role of a weight function
(data vectors x; closer to the point of estimate x are weighted more) and can be chosen to
be any valid probability density function. Asymptotically, under optimal Mean Square
Error (MSE) arguments, k should be chosen proportional to n#(d+4) for 2 probability
density that is twice differentiable. However, given a single sample from an unknown

density, such a rule is of little practical utility. The sensitivity to the choice of k is
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somewhat lower as a kemel that is monotonically decreasing with ri(x), is used. A new
kemel function that weights the jth neighbor of x; using a kernel that depends on the
distance between x; and its jth neighbor is developed in the resampling methodology
section.

Yakowitz (references cited earlier) developed a theoretical basis for using nearest-
neighbor and kernel methods for time series forecasting and applied them in a hydrologic
context. In these papers, Yakowitz considers a finite order, continuous parameter
Markov Chain as an appropriate model for hydrologic time series. He observes that
discretization of the state space can quickly lead to either an unmanageable number of
parameters (the curse of dimensionality) or poor approximation of the transition
functions, while the ARMA approximations to such a process call for restrictive
distributional and structural assumptions. Strategies for the simulation of daily flow
sequences, one-step-ahead prediction, and the conditional probability of flooding (flow
crossing a threshold) are exemplified with river flows and shown to be superior to
ARMA models. Seasonality is accommodated by including the calendar date as one of the
predictors. Yakowitz claims that this continuous parameter Markov chain approach is
capable of reproducing any possible Hurst coefficient. Classical ARMA models are
optimal only under squared error loss, and only for linear operations on the observables.
The loss/risk functions associated with hydrologic decisions (e.g., declare a flood
warning or not) are usually asymmetric. The nonparametric framework allows attention
to be focused directly on calculating these loss functions and evaluating the
consequences.

The example of Figure 2-1 is now extended to show how the nearest-neighbor
method is used in the Markov framework. One-step Markov transition functions are

considered. The relationship between x| and x; is shown in Figure 2-2. The correlation
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between x; and x; 1 is 0, even though there is clear-cut dependence between the two
variables.

Consider an approximation of the model in Figure 2-1 by a multistate, first-order
Markov chain, where transitions from say state 1 for x, (0 to 0.25 in Figure 2-2), to
states 1, 2, 3, or 4 for x| are of interest. The state i to state j transition probability Pij is
evaluated by counting the relative fraction of transitions from state i to state j. The
estimated transition probabilities depend on the number of states chosen as well as their
actual demarcation (e.g., one may need a nonuniform grid that recognizes variations in
data density). For the nonlinear model used in our example, a fine discretization would be
needed. Given a finite data set, estimates of the multistate transition probabilities may be
unreliable. Clearly, this situation is exacerbated if one considers higher dimensions for
the predictor space. Further, a reviewer observed that a discretization of a continuous
space Markov process is not necessarily Markov.

Now consider the nearest-neighbor approach. Consider two conditioning points
x* 5 and x*g. The k nearest neighbors of these points are in the dashed windows A and
B, respectively. The neighborhoods are seen to adapt to variations in the sampling
density of x,. Since such neighborhoods represent moving windows (as opposed to fixed
windows for the multistate Markov chain) at each point of estimate, we can expect
reduced bias in the recovery of the target transition functions. The one-step transition
probabilities at x*; can be obtained through an application of the nearest-neighbor density
estimator to the x;,; values that fall in windows like A and B. A conditional bootstrap
of the data can be obtained by resampling from this set of x| values. Since each
transition probability estimate is based on k points, the problem faced in a multistate
Markov chain model of sometimes not having an adequate number of events or state

transitions to develop an estimate is circumvented.
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The Nearest-Neighbor
Resampling Algorithm

In this section, a new algorithm for generating synthetic time series samples by
bootstrapping (i.e., resampling the original time series with replacement) is presented.
Denote the time series by x, , t=1...n, and assume a known dependence structure, i.e.,
which and how many lags the future flow will depend on. This conditioning set is termed
a “feature vector,” and the simulated or forecasted value the “successor”. The strategy is
to find the historical nearest neighbors of the current feature vector, and resample from
their successors. Rather than resampling uniformly from the k successors, a discrete
resampling kemnel is introduced to weight the resamples to reflect the similarity of the
neighbor to the conditioning point. This kernel is monotonically decreasing with distance,
adapts to the local sampling density, to the dimension of the feature vector, and to
boundaries of the sample space. An attractive probabilistic interpretation of this kernel
consistent with the nearest-neighbor density estimator is also offered. The resampling
strategy is presented through a flow chart.

(1) Define the composition of the “feature vector” Dy of dimension d.

e.g., (a)Dy: (X¢.1» Xp.2) s d=2

(b) Dg: (Xe-1, Xt-2¢1s - Xt-My1p; Xt-1p0 Xt-2190 - Xt-MpTp) 5
d=Mj+M,

(c) D X'tgpr o XMyt X' X't oo x"t-Mz'tz); d=M1+M>s+1
where 11 (e.g., | month) and 13 (e.g., 12 months) are lag intervals, and M1, Mg 20 are
the number of such lags considered in the model.

Case 1 represents dependence on two prior values. Case 2 permits direct

dependence on multiple time scales, allowing one to incorporate monthly and interannual
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dependence. For case 3, x', and x" may refer to rainfall and runoff, or to two different
streamflow stations.
(2) Denote the current feature vector as D; and determine its k nearest neighbors

among the Dy, using the weighted Euclidean distance

d 172
e =(Z wi(v; — V”-)z) .3)

j=1

where vij is the jth component of Dy, w; are scaling weights (e.g., 1, or llsj), where i
is some measure of scale such as the standard deviation or range of V-

The weights wj may be specified a priori, or chosen to provide the best forecast for
a particular successor in a least squares sense [Yakowitz and Karlsson, 1987].

Denote the ordered set of nearest-neighbor indices by J; k- An element j(1) of this
set records the time t associated with the jth closest Dy to D;. Denote Xi() as the successor
to Dj(i)' If the data are highly quantized, it is possible that a number of observations may
be the same distance from the conditioning point. The resampling kernel defined in step
3 is based on the order of elements in J; x- Where a number of observations are the same
distance away, the original ordering of the data can impact the ordering in J; k- Toavoid
such artifacts, the time indices t are copied into a temporary array that is randomly
permuted prior to distance calculations and creation of the list J; X

(3) Define a discrete kernel K(j(i)) for resampling one of the Xj(i) s follows:

K(@)=—3- 2.4)

21
=1

where K(j(i)) is the probability with which Xi(i) is resampled.
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This resampling kernel is the same for any i, and can be computed and stored prior
to the start of the simulation.

(4) Using the discrete probability mass function (p.m.f.) K(j(i)), resample an Xi(i)»
update the current feature vector and proceed to step 2 if additional simulated values are
needed.

A similar strategy for time series forecasting is possible. An m-step-ahead forecast

is obtained by using the corresponding generalized nearest-neighbor regression estimator:
k

EGNN (xm ) =Z K(@))x i(D.m (2.5)
Fl

where Xi,m and Xj(i),m denote the mtf successor to 1, and j(i), respectively.

Parameters of the Nearest-
Neighbor Resampling Method

Choosing the Weight Function K(v)
The goals for designing a resampling kernel are to (1) reduce the sensitivity of the

procedure to the actual choice of k, (2) keep the estimator local, (3) have k éufﬁciently
large to avoid simulating nearly identical traces, (4) develop a weight function that adapts
automatically to boundaries of the domain, and to the dimension d of the feature vector
D,. These criteria suggest a resampling kernel that decreases monotonically as Ljj
increases.

Consider a d-dimensional Ball of Volume V(r) centered at D;. The observation Dj(j)
falls in this ball when the ball is of volume exactly V(ri,j(i))' Assuming that the
observations are independent (which they may not be), the likelihood with which the
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j(i)th observation should be resampled as representative of Dj; is proportional to
1 VAY (rlj(l))

Now, consider that in a small locale of Dj, the local density can be approximated as
a Poisson process, with constant rate A. Under this assumption, the expected value of

1/Vi (rlj(l)) is:
E(I/V(tj)) = Mj (2.6)

The kemnel K(j(i)) is obtained by normalizing these weights over the k nearest

neighborhood.
K@=t =i @7
YcAlj Yl/j
=1 =1

where c is a constant of proportionality.

These weights do not explicitly depend on the dimension d of the feal_:ure vector Dy.
The dependence of the resampling scheme on d is implicit through the behavior of the
distance calculations used to find nearest neighbors as d varies. Initially, we avoided
making the assumption of a local Poisson distribution, and defined K(j(i)) through a
normalization of 1/V. (rij(i))- This approach gave satisfactory results as well but was
computationally more demanding. The results obtained using Equation (2.7) were
comparable for a given k.

The behavior of this kernel in the boundary region, the interior, and the tails is seen
in Figures 2-3 and 2-4. From Figure 2-3, observe that the nearest-neighbor method

allows considerable variation in the “bandwidth” (in terms of a range of values of x) as a
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function of position, and underlying density. The bandwidth is automatically larger as the
density is sparser and flatter. In regions of high data density (left tail or interior), the
kernel is nearly symmetric (the slight asymmetry follows the asymmetry in the underlying
distribution). Along the sparse right tail, the kernels are quite asymmetric as expected.
Some attributes of these kernels relative to a uniform kernel (with the same k), used by
the ordinary nearest-neighbor method are shown in Figure 2-4.

For bounded data (e.g., streamflow that is constrained to be greater than 0),
simulation of values across the boundary is often a concem. This problem is avoided in
the method presented since the resampling weights are defined only for the sample
points. A second problem with bounded data is that bias in estimating the target function
using local averages increases near the boundaries. This bias can be recognized by
observing that the centroid of the data in the window does not lie at the point of estimate.
From Figure 2-4 note that while the kernel is biased towards the edges of the data, i.e.,
the centroid of the kernel does not match the conditioning point, the bias is much smaller
than for the uniform kernel. If one insists on kerels that are strictly positive with
monotonically decreasing weights with distance, it may not be possible to devise kernels
that are substantially better in terms of bias in the boundary region. '

The primary advantages of the kernel introduced here are:

(1) It adapts automatically to the dimension of the data.

(2) The resampling weights need to be computed just once for a given k (there is no
need to recompute the weights or their normalization to 1).

(3) Bad effects of data quantization or clustering (this could lead to near zero values
of Ij,j(i) at some points) on the resampling strategy, which arise if one were to resample
using a kernel that depends directly on distance (e.g., proportional to 1/V (fi,j(i))’ are

avoided. These factors translate into considerable savings in computational time that can
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be important for large data sets and high dimensional settings, and to improved stability
of the resampling algorithm.

Choosing the Number of Neighbors k,
and Model Order d

The order of ARMA models is often picked [Loucks et al., 1981] using the Akaike
Information Criteria (AIC). Such criteria estimate the variance of the residual to time
series forecasts from a model, appropriately penalized for the effective degrees of
freedom in the model. A similar perspective based on cross validation is advocated here.
Cross validation involves “fitting” the model by leaving out 1 value at a time from the
data, and forecasting it using the remainder. The model that yields the least predictive
sum of squares of errors across all such forecasts is picked. One can approximate the
average effect of such an exercise on the sum of squares of errors without going through
the process.

Here, the forecast is formed (Equation 2.5) as a weighted average of the
successors. When using the full sample, define the weight used with the successor to the
current point as Wij- This weight recognizes the influence of that point on the estimate at
the same location. Hence, the influence of the rest of the points on the fit at that point is
(1- jj)' This suggests that if estimated full sample forecast error i is divided by (1 - Wjj)
a measure of what the error may be if the data point (Dj, xJ-) was not used in developing
the estimate is provided. Note that the degrees of freedom (e.g., 0 for a k=1; 1-1/3 for a
k=3 using a uniform kemel) of estimate are implicit in this idea. Craven and Wahba
[1979] present a Generalized Cross Validation (GCV) score function that considers the
average influence of excluded observations for estimation at each sample point and

approximates the predictive squared error of estimate. The GCV score is given as:
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3 e2/n
GCV= i=l (2.8)

- T
(pl (I—-wﬁ)/n)

The GCV score function can be used to choose both k and d. For the kernel

suggested in this chapter, Wi is a constant for a given k, and the GCV can be written as:

Yeln
GCV= —=t 2.9

(1 - 1/}1‘:1@)z

j=t

A prescriptive choice of k=Vn from experience is also suggested. This is a good
choice for 1<d<6, and n>100. Sensitivity to the choice of k in this neighborhood is small
and where computational resources are limited this choice can be recommended.
Typically, with a sample size n of 50 to 200, this corresponds to a choice of k ranging
from 7 to 14. When using the GCV criteria with the same sample size, it is our
experience that varying k within five to 10 units of the optimal selected value does not
appreciably change the GCV score.

Criteria such as the GCV and the AIC are known to overfit or over parameterize
time series relationships. With the nearest-neighbor resampler, a model with order higher
than necessary will have increased variability for a given k. The extra or superfluous
coordinates serve to degrade rather than enhance identification of the patterns that
describe the system. Likewise, a smaller than optimal choice of d would lead to traces
that lack the appropriate memory. Comparison of the attributes of the series generated by

models with different values of k and d is consequently desirable. These comparisons
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can be based on how well attributes of direct interest to the investigator such as run
lengths or the frequencies of threshold crossings are reproduced. One can try various
combinations of k and d and visually compare resampling attributes with historical

sample attributes (sample moments and marginal or joint probability densities).

Applications

Two synthetic examples, one from a linear and one from a nonlinear model, are
presented first. These are followed by an application to monthly flows from the Weber
River near Oakley, Utah. In all cases a lag one model with k chosen as Vn was used.

Comparative performance of the simulations is judged using sample moments and
sample probability density functions (p.d.f.’s) estimated using Adaptive Shifted
Histograms (ASH) [Scotr, 1992]. In all applications using the univariate ASH, a bin
width of (X 5¢-Xpip)/9.1 where X, and Xmin are the respective maximum and
minimum values of the data, and five shifted histograms were used. For bivariate
densities, a bin width of (Xmax-Xmin)/3.6 and five shifted histograms in each coordinate
direction were used. These are the default settings for the computer code distributed by
David Scott. Conditional expectations, E(x; | x,_1), are estimated using LOWESS
[Cleveland, 1979]. LOWESS is a popular robust locally weighted linear regression
technique, that allows a flexible curve to be fit between two variables. We used default
parameter choices (three iterations for computing the robust estimates based on two third

of the data) with the “lowess” function available on Splus [Chambers and Hastie, 1992].

Example E1

The first data set considered is a sample of size 500 from a linear autoregressive

model of order 1, AR1, defined as:
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x;=0.6x.1+08¢e, (2.10)

where e, is a mean zero, variance 1, Gaussian random variable.

One hundred realizations of length 500 each were then generated from an AR(1)
model fitted to the sample, and from the nearest-neighbor (k-nn) bootstrap. Selected
statistics from these simulations are compared in Table 2-1. The sample statistics
considered are reproduced by the k-nn method, while only the sample statistics used in
fitting the parametric AR1 model are reproduced. The AR1 simulations instead reproduce
population or model statistics (e.g., skew =0) for parameters that are not explicitly
estimated from the sample. With repeated applications to a number of samples from the
same distribution, the k-nn procedure reproduces the population statistics as well. On the
other hand, a parametric model only reproduces fitted statistics. The ASH estimated
median p.d.f. of x, from the k-nn resamples matches the sample p.d.f., and the scatter
of the estimated p.d.f.’s across resamples is comparable to the scatter from the AR(1)

samples. These results are not reproduced here to save space.

Example E2 )
A sample of size 200 was generated from a Self-Exciting Threshold Autoregressive

(SETAR) model described by Tong [1990]. The general structure of such models is
similar to that of a linear autoregressive model, with the difference that the parameters of
the model change upon crossing one or more thresholds. Such a model may be
appropriate for daily streamflow, since crossing a flow threshold (defined on a single
past flow or collectively on a set of past flows) with flow increasing may signal runoff
response to rainfall or snow-melt, and crossing the threshold with flow decreasing may
signal return to base flow or recession behavior. Here alag 1 SETAR model given

below was used:
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x=04+08x.)+e; ifx,<0.0

=-1.5-0.5x;.1 +e, else .11

where e, is a Gaussian random variable with mean 0, and variance 1.

The time series generated from the SETAR model and a time series simulated by the
nearest-neighbor method are shown in Figure 2-5. The bivariate probability densities
f(x, x¢.1) for the original SETAR sample and for 100 nearest-neighbor samples each of
length 200 were computed using ASH. The estimated f(x» X¢.1) from the original sample
along with a LOWESS fit of E(x; | x,_1) and an average of the f(x¢, X¢-1) estimates taken
across the nearest-neighbor realizations are illustrated in Figure 2-6. We see that the

bivariate density of the data is reproduced quite well by the simulations.

Example E3
The 1905-1988 monthly flow record from USGS station 10128500, Weber River

near Oakley, Utah, located at40°44'10"N, and 111°14'45"W, at an elevation of 6600
ft above Mean Sea Level was extracted from the USGS, HCDN CD-ROM [Slack et al.,
1992]. This data set is presumed to be free of the effects of regulation, diversion, and
similar factors. Weber River at this location is a snow-melt fed, perennial, mountain
stream, with a drainage area of 162 square miles. The mean annual flow is 223 cfs. June
is the month with the highest flow, subsequent to snow-melt. January is typically the
month with the lowest flow. The 1905-1988 monthly time series, and flows for two
specific years are presented in Figure 2-7.

A monthly AR model was fitted to logarithmically transformed monthly flows,
with monthly varying parameters estimated as described in Loucks et al. [1981] to

preserve moments in real space. This entails sequentially simulating monthly flow
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moving through the calendar year, using (for example) only the 83 monthly values for
January and February over the 83-year record to simulate February flows given January
flows. One hundred simulations of 83 years were generated in each case. The k-nn
bootstrap is applied in a similar manner using (for exat.nple) January flows to find
neighbors for a given January flow, and the corresponding February successor. The flow
data are not logarithmically transformed for the k-nn bootstrap.

Selected results are presented. A comparison of means, standard deviations, skew,
and lag 1 correlations is presented for the 12 months in Figure 2-8. Both the k-nn and the
AR1 model seem to be comparable in reproducing the mean monthly flow and its
variation across simulations. The standard deviations of monthly flows are somewhat
more variable in k-nn simulations than those from the AR1 model. Some months (low
flows) have a slight downward bias in the simulated standard deviation, while others
(March and July, the months following a minimum and maximum in monthly flow,
respectively) show a larger spread in standard deviation than in the AR1 case. While both
models seem to do well in reproducing the historical lag 1 correlation, the k-nn statistics
appear to be more variable across realizations. A difference between the two simulators is
apparent in Figure 2-8(c) where the AR1 model fails to reproduce the montl.lly and the
annual skews as well as the k-nn model. Recall that the ad hoc prescriptive choice of
k=Vn was used here, with no attempt at fine-tuning the k-nn simulator.

The marginal probability density functions were estimated by ASH for flow in each
month. Selected results for simulations from the k-nn and for the AR1 model applied to
logarithmically transformed flows for 3 months in Figure 2-9. We see from Figure 2-9
that the k-nn samples are indeed a bootstrap, i.e., the simulated marginal probability
densities behave much like the empirical sample probability density. The usual

shortcoming of the bootstrap in reproducing only historical sample values is also
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apparent. We see that while the Lognormal density used by the AR1 model is plausible in
a number of months (e.g., October), the Lognormal model seems to be inappropriate in
other months, e.g., March, where the skew is too extreme for the AR1, and June, which
exhibits a distinct bimodality that may be related to the timing or amount of snow-melt.
The latter is interesting, since the 100 simulations from the AR1 model fail to bracket the
two prominent modes of the ASH density estimate, lending support to the idea of
bimodality under a pseudo-hypothesis test obtained from this Monte Carlo experiment.

The bivariate probability density functions for flows in each consecutive pair of
months (e.g., May and June) were also computed by ASH. Results for selected months
are presented in Figures 2-10 to 2-12. Other month pairs were found to exhibit features
similar to those in Figures 2-10 to 2-12. In each case, we present a scatterplot of the
flows (in cfs.) in the 2 months, with a LOWESS [Cleveland, 1979] smooth of the
conditional expectation E(x, | x;_1). An examination of the October-November density in
Figure 2-10 reveals that the AR1 model may be quite appropriate for this pair of months.
The ASH estimated density from the sample and the averages of the ASH estimated
densities from the AR1 and the k-nn samples are all very similar. The LOWESS estimate
of the conditional expectation of the November flow given the October ﬂov.v is very
nearly a straight line.

Figures 2-11 and 2-12 refer to the months of April/May and May/June, where
runoff from snow-melt becomes important. The timing of the start and of the peak rate of
snow-melt vary over this period. Consequently, one can expect some heterogeneity in the
sampling distributions of flows in these months. From Figure 2-11 (a), we see that the
LOWESS estimate of E(x; | x;.1) exhibits some degree of nonlinearity for April/May. The
slope of E(xq | x,_1) for x;_; <150 cfs is quite different from the slope for X¢.1>150 cfs.

This is reminiscent of the SETAR model examined earlier. We could belabor this point
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through formal tests of significance for difference in slope. Our purpose here is to show
that the k-nn approach can adapt to such sample features, while the AR1 model may not.
The average bivariate densities of the simulations based on ASH once again reinforce this
difference between the k-nn and the AR1 models and their attributes. Note also that the
ARI simulations do not reproduce the sample skews for this period either.

The May/June analysis shown in Figure 2-12 is marked by considerably increased
variability in stream flow as the snow-melt runoff develops. Once again, LOWESS
shows some degree of nonlinearity in E(x; | x;_1), with the slope of the relationship
smaller for high flows than for low flows. A comparison of the ASH bivariate density
contours in Figures 2-12(a)-and (c) reveals that the AR1 density is oriented quite
differently from the ASH estimate for the raw sample and is unable to reproduce the
degree of heterogeneity in the sample density. Recall that the marginal density of June
flows was bimodal, with an antimode around 1000 cfs. The antimode suggests that the
data are clustered into two classes of events, those with flow below 1000 cfs (mode at
700 cfs) and those with flow above 1000 cfs (mode at 1300 cfs). The LOWESS fit
suggests that the June flows have an expectation close to 1000 cfs for May flows greater
than about 700 cfs. It appears that the conditional expectation averages across the two
modes for June flows, and that the conditional density (Figure 2-12(b)) of June flows
given May flow may be bimodal as seen in the marginal density plot for June flows.

The significance of the findings reported above is that the nearest-neighbor
bootstrap provides a rather flexible and adaptive method for reproducing the historical
frequency distribution of streamflow. The possibly tenuous issue of choosing between a
variety of candidate parametric models, month by month, is avoided. Matching the
historical frequency distribution of flows properly is important for properly estimating
storage requirements for a reservoir and analyzing reservoir release options. For snow-

melt driven streams in arid regions, the timing and amount of melt is important in
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determining reservoir operation. The bimodality in the probability density of monthly
streamflow during the melt months may be connected to structured low frequency
(interannual and interdecadal) climatic fluctuations in this area [Lall and Mann, 1995].
This would be a significant factor for reservoir operation, since the timing and amount of
snow-melt may correspond to a circulation pattern that corresponds to specific flow
patterns in subsequent months as well. The nearest-neighbor bootstrap would be an
appropriate technique for simulating sequences conditioned on such factors. Work in this

direction is in progress.

Summary and Discussion

A nearest-neighbor method for a conditional bootstrap of time series was presented
and exemplified. A corresponding forecasting strategy was indicated. Our contributions
here lie primarily in the development of a new kernel, suggestion of a parameter selection
strategy, application to a conditional bootstrap, and demonstration of the methodology. It
was shown that sample attributes are reproduced quite well by this nonparametric method
for both synthetic and real data sets. Given the flexibility of these techniques, we
consider them to have tremendous practical potential. '

The parametric versus nonparametric statistical method debate often veers towards
sample size requirements and statistical efficiency arguments. In the context of a
resampling strategy, as espoused here, these arguments take a somewhat different
complexion. For some processes, such as daily streamflow, identification or even
definition of an appropriate parametric model is problematic. In these cases, data are
relatively plentiful. For such cases, methods such as those presented here are enticing.
For monthly and annual flows, there is progressively less structure and sample sizes are

smaller. In these situations, parametric methods may indeed be statistically more efficient
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provided the correct model is identifiable and parsimonious. In our view, particularly for
the snow-fed rivers of the western United States, this may not always be the case.
Indeed, for the application presented here at the monthly time scale, it is hard to justify
choosing the parametric approach over the nearest-neighbor method. The consideration of
parameter uncertainty is justifiably considered a good idea in parametric time series
resampling of streamflow [Grygier and Stedinger, 1990]. Likewise, it may be useful to
think about model uncertainty when developing parametric models. The latter
consideration is implicit in the nonparametric approach, since a rather broad class of
models is approximated. The impact of varying the “parameters” k, and the model order
on specific attributes of the resamples bears further investigation. Our preliminary
analyses suggest that the sensitivity of the scheme is limited over a range of k values pear
the “optimal” with the kernel used here. Formal investigations of this issue are being
pursued.

One can devise a strategy that allows nearest-neighbor resampling with perturbation
of the historical data in the spirit of traditional autoregressive models, i.e., conditional
expectation with an added random innovation. First, one evaluates the conditional
expectation using the generalized nearest-neighbor regression estimator for-each vector D;
in the historical record. A residual e; can be computed as the difference between the
successor x; of D; and the nearest-neighbor regression forecast. The simulation proceeds
by estimating the nearest-neighbor regression forecast relative to a conditioning vector
D;, and then adding to this one of the i corresponding to a data point j, that lie in the k-
nearest neighborhood Ji k- The innovation €; is chosen using the resampling kernel
K(j(i)). This scheme will perturb the historical data points in the series, with innovations
that are representative of the neighborhood, and will thus “fill in” between the historical

data values, as well as extrapolating beyond the sample. The computational burden is
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increased and there is a possibility that the bounds on the variables will be violated during
simulation. However, there may be situations where the investigator may wish to adopt
this strategy. Further exploration of this strategy is planned.

Issues such as disaggregation of streamflows bear further investigation. One
strategy is trivial; resample the flow vector that aggregates to the aggregate flow
simulated. A question that arises is whether there is even any need to work with models
that disaggregate (especially in time) using these methods. One may wish to work directly
with, for example, the daily flows, conditioned on a sequence of past daily flows and
weekly or monthly flows.

The real utility of the method presented here may lie in exploiting a dependence
structure (e.g., in daily flows) that is difficult to treat by traditional methods, as well as
complex relationships between variables, and in estimating confidence limits or risk in
problems that have a time series structure. The traditional time series analysis framework
directs the researcher’s attention towards an efficient estimation of model parameters
under some metric (e.g., least squares or maximum likelihood). The performance metric
of interest to the hydrologist may not be the one optimal for the estimation of a certain set
of parameters and selected model form. There is reason to directly explore other aspects
of the problem that may be of direct interest for reservoir operation and flood control,
using flexible, adaptive, data exploratory methods. Such investigations using the k-nn

bootstrap are in progress.
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Table 2-1. Statistical Comparison of k-nn and AR1 Model Simulations Applied to an
AR1 Sample

AR1 Sample Simulations
5 % Quantile Median 95 % Quantile

k-nn ARl k-nn ARl k-nn ARl
Mean 0.04 -0.14 -0.12 0.02 0.04 0.24 0.20
Standard 1.11 1.02 1.03 1.10 1.11 1.18 1.20
Deviation
Skew -0.17 -0.32 -0.25 -0.18 0.00 -0.03 0.21
Lagl 0.63 0.56 0.57 0.62 0.63 0.68 0.69

Correlation
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A time series from the model
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Figure 2-1. A time series from the model Xe1=( 1-4(xt-0.5)2). Thisisa aeterminisﬁc,

nonlinear model, with a time series that looks random. A forecast of the successor to the
bi-tuple D;, marked as § in the figure, is of interest. The “patterns” or bituples of interest

are the filled circles, near the 3 nearest neighbors, D, Dy, and D3 to the pattern D;. The

successors to these bituples are marked as 1, 2, and 3, respectively. Note how the
successor (1) to the closest nearest neighbor (D) is closest to the successor (s) of D;. A

sense of the marginal probability distribution of x, is obtained by looking at the values of
X; shown on the right of the figure. As the sample size n increases, the sample space of x

gets filled in between 0 and 1, such that the sample values are arbitrarily close to each
other, but no value is ever repeated exactly.
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Figure 2-2. A plot of x; ] vs x; for the time series generated from the model Xe1=(1-

4(xt-0.5)2). The state space for x is discretized into four states as shown. Also shown are
windows A and B with whiskers located over two points x* A and x*g. These windows
represent a k nearest neighborhood of the corresponding x;- In general, these windows
will not be symmetric about the x; of interest. One can think of state transition

probabilities using these windows in much the same way as with the multistate Markov
chain. A value of x| conditional to point A or B can be bootstrapped by appropriately

sampling with replacement one of the values of X  that fall in the corresponding

window.

State
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Figure 2-3. llustration of resampling weights, K(j(i)), at selected conditioning points
xj, using k=10 with a sample of size 100 from an exponential distribution with parameter

=1. The original sampled values are shown at the top of the figure. Note how the
bandwidth and kernel shape vary with sampling density.
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Figure 2-4. llustration of weights K(j(i)) versus weights from the uniform kernel
applied at three points selected from Figure 2-3. The uniform kernel weights are 1/k for

each jeJ(i,k). The effective centroid corresponding to each kernel for each conditioning
point i (in each case with the highest value of K(j(i)) is shown. For i in the interior of the
data (Figure 2-4b), the centroids of both the uniform kernel and K(j(i)) coincide with i.
Towards the edges of the data (Figures 2-4a and 2-4c), the centroid corresponding to
K(j(1)) is closer to i, than that for the uniform kemel. The K(j(i)) are thus less biased than
the uniform kerel for a given k. The kernel K(j(i)) also has a lower variance than the
uniform kernel for a given value of k.
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Figure 2-5. (2) A time series trace from the SETAR model described by Equation 2.11
and (b) a time series trace from a k-nn resample of the original SETAR sample.
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Figure 2-6. (a) An ASH estimate of the bivariate probability density f(x,, x,.1) for the
SETAR sample, the thick curve denoting a LOWESS smooth, and (b) an average of the

ASH estimates of the bivariate probability density f(x;,
from the SETAR sample.

X;-1) across 100 k-nn resamples
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1906 clearly shows that the time series is irreversible, i.e., its properties will be quite
different in reverse time.
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Figure 2-8. Monthly and annual statistics - (a) log(mean flow), (b) log(standard
deviation), (c) skew, and (d) lag 1 correlation for simulated traces using AR1 and k-nn
models for the Weber River data. The solid line in each figure represents the statistic for
the historical sample. Boxplots compare the statistic over simulations. Boxplots comprise
of a box being placed on the interquantile range from the multiple realizations of the
statistic being compared, the line in the center of this box being the median. The whiskers
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figure gives the historical annual statistic. Annual flows are not modeled explicitly by
either simulator used.
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Figure 2-10. (a) An ASH estimate of the bivariate probability density f(x;, x,_1) for the

October-November historical flows, the thick curve denoting a LOWESS smooth, (b) an
average of the ASH estimates of f(x¢, X¢.1) across 100 simulations from an AR1 model,

and (c) an average of the ASH estimates of f(x;, X,.1) across 100 k-nn resamples.
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Figure 2-11. (a) An ASH estimate of the bivariate probability density f(x;, x;.1) for the

April-May historical flows, the thick curve denoting a LOWESS smooth, (b) an average
of the ASH estimates of f(x{, X;.1) across 100 simulations from an AR1 model, and (©)

an average of the ASH estimates of f(x,, X;.1) across 100 k-nn resamples.
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Figure 2-12. (a) An ASH estimate of the bivariate probability density f(xy, x;_1) for the

May-June historical flows, the thick curve denoting a LOWESS smooth, (b) ASH
estimate of the probability density of June flows conditional to a May flow of 867 cfs, ©
an average of the ASH estimates of f(x,, x,_1) across 100 simulations from an AR1

model, and (d) an average of the ASH estimates of f(xy, x;_1) across 100 k-nn resamples.
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CHAPTER 3
STREAMFLOW SIMULATION USING NONPARAMETRIC

DENSITY ESTIMATION!

Abstract

In this chapter kernel estimates of the joint and conditional probability density
functions are used to generate synthetic streamflow sequences. Streamflow is assumed
to be a Markov process with time dependence characterized by a multivariate probability
density function. Kemel methods are used to estimate this multivariate density function.
Simulation proceeds by sequentially resampling from the conditional density function
derived from the kernel estimate of the underlying multivariate probability density
function. This is a nonparametric method for the synthesis of streamflow that is data-
driven and avoids prior assumptions as to the form of dependence (e.g., linear or
nonlinear) and the form of the probability density functions (e.g., Gaussian). We show,
using synthetic examples with known underlying models, that the nonparametric method
presented is more flexible than the conventional models used in stochastic hydrology and
is capable of reproducing both linear and nonlinear dependence. The effectiveness of this
model is illustrated through its application to simulation of monthly streamflow at a

station in the Snake River Basin.

Introduction

A goal of stochastic hydrology is to generate synthetic streamflow sequences that
are statistically similar to observed streamflow sequences. Statistical similarity implies
sequences that have statistics and dependence properties similar to those of the historical

record. These sequences represent plausible future streamflow scenarios under the

1Coauthored by Ashish Sharma, David G. Tarboton, and Upmanu Lall.
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assumption that the future will be similar to the past. Synthetic streamflow sequences are
needed in simulation studies to analyze alternative designs, operation policies, and rules
for water resources systems. In this chapter, we present a nonparametric approach for the
generation of synthetic streamflow sequences. The utility of this approach relative to
conventional parametric methods is demonstrated through applications to monthly
streamflow from the Snake River at Weiser, Idaho, and to samples generated from linear
and nonlinear models with known statistical attributes.

Consider a time seres {X{, X3, ... , X, ...} where the X represent streamflow
quantities at time t. In practice, the dependence structure of streamflow sequences is
often assumed to be Markovian, i.e., dependent only on a finite set of prior values. With
this assumption, Bras and Rodriguez-Iturbe [1985] note that stochastic streamflow
models are an exercise in conditional probability. An order p model simulates X based
on the previous values, i.e., X 1, X¢2,-- -, Xt—p' This requires that a d = p+1
dimensional joint probability distribution be specified. Simulation can proceed from the
conditional density function defined as:

)= f(Xt, Xt-l’ Xt-2’ T ’Xt-p)
XX X X )X,

(XX, X ... X 3.1)

Traditional parametric models specify Equation (3.1) through assumed
distributions. Here, it is suggested that streamflow may instead be directly modeled from
empirical, data-driven estimates of the joint and conditional density functions given in
Equation (3.1). Nonparametric estimates of these density functions are developed
directly from the historical data. A method is considered nonparametric if it can

reproduce a broad class of possible underlying density functions [Scott, 1992].
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Nonparametric methods for density estimation strive to approximate the underlying
density locally using data from a small neighborhood of the point of estimate [Lall,
1995]. They impose only weak assumptions, such as continuity of the target function,
rather than a priori specification or choice of a particular parametric probability
distribution (e.g., Gaussian, Lognormal, etc.). A perusal of the statistical literature
shows that nonparametric statistical estimation, using splines, kernel functions, nearest-
neighbor methods, and orthogonal series methods is an active area, with major
developments still unfolding. Silverman [1986] and Scort [1992] are good introductory
texts. Applications of these methods in hydrology are reviewed by Lall [1995].

Our model is based on a nonparametric kernel density estimate of the p+1
dimensional density function f(X, X;_1, - - ., xt—p)' which is then used in (3.1) to
estimate the conditional density function that forms the basis for generation of synthetic
streamflow series. This is called a nonparametric order p or NPp model. It has the
following advantages:

(1) Statistical attributes of the data are automatically honored since one works with
a smoothed empirical frequency distribution based directly on the historical data. Such
attributes include nonlinear dependence and inhomogeneity (i.e., statistical .properties that
vary by streamflow state).

(2) The somewhat tenuous issue of choosing between different models for the
probability distribution is sidestepped.

(3) Considerations related to the above two points lead to a procedure that is more
reliable for streamflow simulation and hence for decisions on reservoir operation and
design.

We shall first review some of the traditional approaches, noting their shortcomings

and motivating the need for the nonparametric approach. Kernel density estimation is
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reviewed next. We then describe the NPp model and illustrate its use with synthetic data
from a linear autoregressive (AR1) model and a self exciting threshold autoregressive
(SETAR) model [Tong, 1990]. These tests demonstrate the effectiveness of the NPp
approach in representing both linear and nonlinear systems, without a prior specification
of the model equations. An application of our model to simulate monthly streamflow
from the Snake River at Weiser, Idaho, is then presented and results are compared to
those from an AR1 model with marginal densities chosen from the best fitting of four

commonly used probability density functions.

Background

Annual and monthly streamflows have been modeled extensively using
autoregressive moving average (ARMA) type models [Yevjevich, 1972; Hipel et al.,
1977; McLeod et al., 1977; Pegram et al., 1980; Salas et al., 1980; Loucks et al.,
1981; Stedinger and Vogel, 1984; Bras and Rodriguez-Iturbe, 1985; Stedinger et al.,
1985b]. The early Thomas-Fiering model [Thomas and Fiering, 1962; Fiering, 1967
Beard, 1967], an autoregressive lag 1 model with seasonally varying coefficients, is a

good example of this approach.

o.
112
(=) =Py - Ky -my ) + 00 W, (3.2)

where Xt,j is the seasonal streamflow at year t and season (month) j, Pj is the lag-one
correlation coefficient between seasons j and j-1, m; is the mean streamflow in season j,
Oj is the standard deviation of flow in season j and Wt,j is an independent random
variable with mean 0 and variance 1. By allowing the noise term Wt,j to be from a

skewed distribution [Lettenmaier and Burges, 1977; Todini, 1980}, streamflow from a
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skewed distribution can be approximated. Thus this model reproduces the mean,
variance, and correlations between monthly streamflows and approximates the skewness.
These are the variables traditionally considered as most important by stochastic
hydrologists. As written, this model only applies to a single site; however, it is
illustrative of a very general class of ARMA models for single sites and in a multivariate
context for multiple sites or seasons that have been developed and applied extensively in
hydrology over the years and described at length in texts on the subject [Salas et al.,
1980; Loucks et al., 1981; Bras and Rodriguez-Iturbe, 1985].

Such models can be viewed as special cases of a general multivariate ARMA(p,q)
model:

P 9
o= 2 A X5+ D B W, +U (3.3)
j=0 j=0

where X is a vector of the variables of interest, including annual and seasonal flows at all
sites, Aj and Bj are coefficient matrices, U is a vector of coefficients, and W, is a vector
of independent random innovations. The first term represents an autoregre.ssive
component and the second term a moving average component. In all but the simplest
univariate models it is impractical to assume anything but a Gaussian distribution for the
W,;. This is equivalent to the assumption of a multivariate Gaussian distribution for the
time series dependence structure. The ARMA model is then defined through the
estimation of the parameters Aj, Bj, U, and the model order (p,q). To account for the
fact that the real streamflows are not Gaussian, the flows are often first transformed to a

Gaussian distribution and then the transformed variables are used with (3.3) [Stedinger,



63

1981; Stedinger and Taylor, 1982; Stedinger et al., 1985a]. Reproducing moments in
the original coordinates may then be difficult.

The general linear model depicted by Equation (3.3) is a special case of the
conditional density function of Equation (3.1). This multivariate Gaussian structure with
transformed marginal distributions (denoted MGTM here) has with few exceptions
[Yakowitz, 1985; Smith, 1991; Smith, 1992; Lall and Sharma, 1996] underlain
practically all stochastic hydrology to date. The Lall and Sharma work is very similar in
spirit to this work, though the approach is that of a nearest-neighbor bootstrap, rather
than kernel density estimation. We believe that both are good alternatives that need to be
considered for streamflow simulation.

The preceding discussion reveals the basic structure of current time series
estimation methods, and hints at their restricted view of the possibilities of variation in
hydrological time series. The main reasons for the prevalence of linear ARMA models for
hydrologic time series analysis may be:

(1) The framework has been well developed in the statistical literature for stationary
processes.

(2) The techniques are well understood and taught.

(3) Software for multivariate analysis has been developed by a number of people, is
readily available and does not pose a severe computational burden.

(4) The models have been reasonably successful for the analysis of monthly and
annual streamflow records. This is particularly true of shorter records. They likely
provide a good first approximation to the underlying time series process.

Some drawbacks of the MGTM approach are:

(1) Only a limited degree of heterogeneity in the statistical dependence structure is

admitted through the normalizing transform. The dependence of variance of streamflow
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on streamflow magnitude is often noted. There is evidence in some streamflow data that
correlations are different depending on whether flows are low or high. We give an
example of this in section 6 below using state-dependent correlation statistics defined in
Appendix A. In a MGTM model, the correlation structure is fixed regardless of flow
magnitude. Among others, Yevjevich [1972] has argued for the systematic identification
of nonstationarities in the mean of the time series (e.g., jumps, periodicities) and their
removal to yield a stationary time series that can be analysed by standard methods.
However, such features may be part of the underlying dynamics and important to model
behavior (e.g., to a drought regime) that may be related to threshold-dependent
processes.

(2) The MGTM models impose a time reversible structure. The joint distributions
of X, X¢41» - Xt4+m) and of (X, X.1, ...X¢.py) are identical. Tong [1990] shows an
example of daily streamflow that is not time reversible, and argues that the dynamics of
physical processes is time irreversible.

(3) The choice of a distribution for W} or of an appropriate transform can be
problematic. For short series, statistical tests are unable to distinguish between candidate
distributions [Kite, 1977]. None of the common transformations may be 'applicable.
Figure 3-1 illustrates this problem with July monthly streamflow from the Beaver River
at Beaver, Utah. The figure shows the histogram of monthly flow, with three commonly
used distributions fitted to the data. The histogram has bimodality that cannot be
reproduced by any of the distributions commonly used. This figure also shows a kernel
density estimate. Note that this is effectively a smoothing of the histogram. The
following Filliben correlation statistics [Grygier and Stedinger, 1990] test the goodness
of fit for each distribution in Figure 3-1. Kemel density estimate: 0.997; Normal: 0.962;
Lognormal: 0.980; Three parameter Lognormal: 0.985 and Gamma: 0.987. Goodness
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of fit is measured by how close this statistic is to 1. By this measure the nonparametric
density estimate fits better than any of these commonly used parametric choices. A x2
test [Benjamin and Cornell, 1970] rejected at the 95% level the hypothesis that this
histogram was from a Gaussian distribution. The x2 test, however, would not reject any
of the other distributions, including the nonparametric density estimate, which is typical
of the inability to distinguish between candidate distributions.

(4) The synthetic traces generated by MGTM replicate the first few (two or three)
moments of the underlying dependence structure. Consequently, the generated series may
bear little resemblance to the observed series in terms of persistence and threshold
crossings, factors that are of interest to hydrologists. The ARMA models also are
incapable of displaying sudden bursts or jumps, a feature that may often be observed
during an otherwise prolonged drought.

(5) Salas and Smith [1981] and Salas et al. [1980] discussed physical
justifications for ARMA models and showed that a linear control system representation of
basin processes can lead to ARMA models of streamflow. However, other factors
emerge, when one considers the relationship of streamflow to some causative factors.
For instance, in snow-fed basins, the streamflow response during snow-melt months is a
threshold response to temperature. The dynamics of soil moisture is hysteretic and
nonlinear. The dynamics of vegetative consumptive use and retention of water is also
quite different during wet and dry periods, and as a function of temperature. Runoff
generation mechanisms during protracted wet or dry periods will consequently be
different. While these comments have more direct bearing on streamflow at time scales
shorter than a month or year, they are relevant for the longer time scales in that they

influence the variance of the streamflow at these time scales.
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(6) Despite the fact that nearly 30 years have elapsed since the classical time series
(AR) models were introduced to practicing hydrologists, acceptance and application of
these models for drought analysis and reservoir operation by practitioners has been
limited. They often prefer to base their decisions on the historical record (or a resampled
proxy thereof). Kendall and Dracup [1991] note that the index sequential method,
which is basically a sequential resampling of the historical record, appears to be the
procedure of choice in many water management agencies, including the California
Department of Water Resources, U.S. Bureau of Reclamation, Los Angeles Department
of Water, and the Metropolitan Water District of Southern California. This is practiced in
spite of the recognition that history is unlikely to repeat, and that the record is perhaps
woefully short. The parametric ARMA models are regarded with suspicion by many
practitioners, in part because they do not seem to replicate aspects of the historical record
seen qualitatively by the practitioner, and in part because the “fitting” process undergone
in developing such a model may leave the practitioner with a sense of uncertainty
equivalent to the uncertainty imparted by just using the record.

In summary, while the MGTM ARMA framework is indeed useful in certain
contexts, a more flexible time series analysis method that is capable of reprbducing
additional features of hydrologic data is needed. The success of linear ARMA models
with some hydrologic data sets may be fortuitous, and a consequence of short records.
The technical issues are nonlinearity, nonstationarity, and inhomogeneity in the
underlying dependence structure. Parametric nonlinear models [Bendat and Piersol,
1986; Tong, 1990] can be used in place of the linear ARMA models to model nonlinear
time series. The use of such models, however, still requires specification of the form of
nonlinear dependence, something which may be difficult to do in practice. From a

practitioner’s perspective the key issue is reproducibility of observed data characteristics,
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simplicity, and dependability. The nonparametric techniques proposed here avoid the
difficult model specification issues associated with parametric linear or nonlinear models.
They amount to resampling from the original data, with perturbations, and reproduce
directly the characteristics of the original data in a simple and dependable way.

Kernel Density Estimation

Kemel density estimation entails a weighted moving average of the empirical
frequency distribution of the data. Most nonparametric density estimators can be
expressed as kernel density estimation methods [Scott, 1992]. In this chapter we use
multivariate kernel density estimators with Gaussian kemels and bandwidth selected
using least squares cross validation [Scort, 1992]. This bandwidth selection method is
one from among the many available methods. Qur methodology is intended to be generic
and should work with any bandwidth and kernel density estimation method. This section
reviews kernel density estimation first in a univariate then in a multivariate setting and
gives details of the Least Squares Cross Validation (LSCV) procedure for estimating
“bandwidth. For a review of hydrologic applications of kernel density and distribution
function estimators, readers are referred to Lall [1995]. Silverman [1986] and Scott
[1992] are good introductory texts.

A univariate kernel probability density estimator is written:

N £ 52
f(x) = Z'EH K(—h—- 3.9

i=1

where there are n sample data x;. K(.) is a kernel function that must integrateto l and h
is a parameter called the bandwidth that defines the locale over which the empirical

frequency distribution is averaged. There are many possible kernel functions given in
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texts such as Silverman [1986] and Scott [1992]. The Gaussian kernel function, a

popular and practical choice, is used here.

S S
K(x) = ﬁ;eXP( x/2) (3.5)

The density estimate in (3.4) is formed by summing kernels with bandwidth h centered at
each observation x;. This is similar to the construction of a histogram where individual
observations contribute to the density by placing a rectangular box (analogous to the
kernel function) in the prespecified bin in which the observation lies. The histogram is
discrete and sensitive to the position and size of each bin. By using smooth kernel
functions, the kernel density estimate in (3.4) is smooth and continuous.

A multivariate extension of (3.4) and (3.5) for a vector x in d dimensions can be

written as:

N , (x-xi)TH’1 (x-x)
f(x)=i-z 77 €Xp\ - 7

(3.6)
= om™ detq)

where n is the number of observed vectors x; and H is a bandwidth matrix that must be
from the class of symmetric positive definite d x d matrices [Wand and Jones, 1994].

The above density estimate is formed by summing Gaussian kernels with a covariance

matrix H, centered at each observation x;. A useful specification of the bandwidth matrix

H is:
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H=2\2§ (3.7

Here, S is the sample covariance matrix of the data and A2 prescribes the bandwidth
relative to this estimate of scale. These are parameters of the model that are estimated
from the data. The procedure of scaling the bandwidth matrix proportional to the
covariance matrix (Equation 3.7) is called “sphering” [Fukunaga, 1972] and ensures that
all kernels are oriented along the principal components of the covariance matrix.
Silverman [1986] cites results indicating that sufficient conditions for convergence
of the kernel density estimate to an underlying density function under broad conditions
met by any kernel that is a usable probability density function are that as n — oo, h — 0
and nh — e. This also applies to A in the multivariate context. However, the rate of

convergence depends on how h or A is chosen. Methods for choosing the bandwidth are

based on evaluation of factors such as bias, E{ f(x)-lf\(x)}, variance, Var{/f(x) }, Mean

Square Error (MSE), Integrated Square Error (ISE), and Mean Integrated Square Error

(MISE) of the estimate.
MSE = E{[f(x)-fx)]2}= (E[fx)-f01}2 + Var{f(x)) (3.8)
2
isE = | (f-0)) (3.9)
9to:l
A 2
MISE=E | (f(x)-f(x)) dx (3.10)
d
R

A small value of the bandwidth (h or A) can result in a density estimate that appears

“rough” and has a high variance. On the other hand, too high an h results in an “over
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smoothed” density estimate with modes and asymmetries smoothed out. Such an
estimate has low variance but is more biased with respect to the underlying density. This
bias-variance trade-off [Silverman, 1986] plays an important role in choice of h.

Taylor series expansion of the one-dimensional density estimate in Equation (3.4)
can be used to show that the Asymptotic Mean Integrated Square Error (AMISE) is
[Silverman, 1986; Sain et al., 1994]:

AMISE(h) = ) n(K) 1 4t R .

where R(g(x)) = | g(x)2 dx for any function g(x) (either K(x) or f'(x)), f" is the second

derivative and 0?( = u2K(u)du. This can be generalized to higher dimensions.

One choice for the bandwidth is one that directly minimizes (3.11) if the true
distribution were known. This value is known as the AMISE optimal bandwidth for that
distribution. For a Gaussian distribution with Gaussian kernel functions (estimator

defined by Equations (3.6) and (3.7)), Silverman [1986] gives this bandwidth as:

1/(d+4) l/(d+4)
v=(3) 3.12)

In the univariate case (d=1) this reduces to h = 1.06 n~1/5 where & is an estimate of the
standard deviation (Silverman advocates a robust estimate) of the data. An upper bound
on bandwidth can be obtained by minimizing R(f") over a class of probability densities.

This leads to the optimal bandwidth for the smoothest possible density function. Scott
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[1992] cites results showing that this upper bound ( 1 £d £10)) is 1.08 to 1.12 times the
A in Equation (3.12).
Data-driven methods have been developed to estimate the bandwidth when the
underlying distribution is not known. They minimize estimates of ISE, MISE, or
AMISE formed only from the data. Least Squares Cross Validation (LSCV)

[Silverman, 1986] is one such method based on the fact that the integrated square error

(Equation 3.9) can be expanded as:
ISE = R(?(x)) -2 ’f\(x) f(x) dx + R(f(x)) (3.13)

The first term may be directly evaluated. The second term may be recognized as E[’f\(X)]
and estimated using leave-one-out cross validation. The last term, R(f(x)), is
independent of the bandwidth and does not need to be considered. The LSCV method in
one dimension chooses bandwidth, h, to minimize the following LSCYV score,

comprising the first two terms in (3.13).

23 % 1 ("i"‘j
2y y Lg
nl=lj lnh h
I (3.14)

Here, K2 denotes the convolution of the kernel function with itself (for example, if K is
the standard Gaussian kernel, then K2) will be the Gaussian density with variance 2).
Sain et al. [1994] provide an expression for LSCV in any dimension with
multivariate Gaussian kernel functions and H a diagonal matrix. Adamowski and
Feluch [1991] provide a similar expression for the bivariate case with Gaussian kernels.

Here we generalize these results for use with the multivariate density estimator (3.6) to:
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wls Z[ exp(-L 4y - 27" exp(-LiJJZ)]

LSCVH) = — =
(2/m)" n det(H) (3.15)
where
Lij = & - x) T HT ;- x7) (3.16)

We use numerical minimization of (3.15) over the single parameter A with bandwidth
manjx from Equation (3.7) to estimate all the necessary probability density functions.
We recognize that LSCV bandwidth estimation is occasionally degenerate, so based on
suggestions in Silverman [1986] and the upper bound given by Scott [1992] we restrict

our search to the range A/4 to 1.1A.

Nonparametric Order p Markov
Streamflow Model, NPp
To keep the presentation simple the equations will be presented for a lag 1 (order

p=1) model. The formulae presented are readily extended to include higher order lags.
Consideration of higher order models raises the issue of determination of the correct
order p. This is deferred to future work. Here results are presented for the simplest case
(NP1) analogous to the simple AR1 model. In the form presented below, the model can
be applied to simulate stationary sequences such as annual flows. We later describe how
application of the model to pairs of sequential months is used to simulate seasonally
nonstationary (e.g., monthly) streamflow sequences.

The joint distribution of X; and its prior value X;.] is estimated using Equation

(3.6) based on n observed data vectors x;. For a time series xq, X[, X2, . . . Xp, the data
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vector X; has elements (xj, xj-1), 1 <i< n. Hence x| = (x1, x0), X2 = (x2, X1), . . . Xp
= (Xp, Xp-1)- This is a series of ordered pairs. There is one less ordered pair than the

length of the time series. The conditional density (Equation 3.1) is written as:

XX ) f(Xt, Xt-l) f(xt’ Xt-l)
- = (3.17)
el i, X ) dX X))
where f,(X-1) is the marginal density of X;.1. Now applying the estimator in (3.6) the
mi\At-1 t-1 PP

joint density estimate is obtained as:

T
[ X-x }S'l[ X -x }
X x X -x
A 1 1 t-1 i1 t-1 "i-1
X, X =73 —5 e 5 (3.18)
=1 22 A" det(S) 2A

Note that each observation contributes to this density estimate depending on the distance
of the observation (x;, x;.1) to the point (X;, X;.1), the bandwidth A and the sample
covariance matrix S of (X, X¢.1)- The bandwidth A is obtained by minimizing the
LSCYV score function (Equation 3.15).

Denote the terms in the covariance matrix:

Sll SIZ]
S< (3.19)
[SZI SZ‘Z

Then for a given X,.1, Equation (3.18) substituted in Equation (3.17) reduces to a sum

of Gaussian kernels dependent on a single variable X,:
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2
foxix )= 3 —=L S
)= —F—=—=w_exp| - 2
S (| 211:}\.28' i 2235 (3.20)
where
2
x:-l'xi-l)
exp| - 3
24s,,
Wi= 2
n (X-l'xj-l)
2, exp| - 5
=l 20°S
22 (3.21a)
51
§'=8 . -5~ (3.21b)
11 522
Sl2
b =x +(X_ %) 5, (3.21¢)

This is illustrated in Figure 3-2. The conditional density is a slice through the
bivariate density function, comprised of a sum of slices through the individual kerels
that form the bivariate density estimate. Parameters b; and A2S' give the center and
spread of each kernel slice, respectively. The area under each kernel slice is the weight
wj, which controls the contribution of x;.] to the conditional density estimate.
Observations that lie close to the conditioning plane (i.e., where (X¢.1 - X-1) is small)
receive greater weight.

A time series realization is simulated by sampling X from (3.20), given a current
value for X;_. The simulation then proceeds sequentially through time, updating X,_j as
the last sampled value. A flowchart describing the steps needed to simulate a sample of

size ng is provided in Figure 3-3. In practice we provide a “warm-up” period for the
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simulation scheme such that the length of the sequence simulated (n,, refer to flowchart in
Figure 3-3) is actually greater than the number desired. The first several (10 years in the
results below) are discarded to account for the arbitrary initialization used.

Note that in the simulation scheme one does not need to explicitly estimate the
conditional density in (3.20). This is avoided by treating it as a mixture of n kernel slices,
each slice being selected with probability w;. Once selected, X is simply a random
variate from that kernel slice. Each slice is itself a Gaussian p.d.f. with mean b; and

variance A2S', so X, is simulated using
Xt = bi +MS Wt (3.22)

where W is N(0,1).

A complication can arise because W, is unbounded and may result in negative X,
The Gaussian kernels used in the kernel density estimate have infinite support and assign
some (small) probability to regions of the domain where the streamflow is negative (i.e.,
invalid or out of bounds). This leakage of probability across boundaries is a problem
when using kemel density estimates based on kernels with infinite support: Itis also
present in the parametric context where a Gaussian distribution, or any parametric
distribution with support extending to negative values or beyond a lower or upper bound
on the process, is used. Here we address the leakage by checking at each step whether
the simulated flow values are positive. Whenever a negative X is encountered, we
generate another sample from the same kemel slice, repeating this process until a positive
Xt is obtained. This is achieved by simply generating a new W, in Equation (3.22). This
is equivalent to cutting the portion of each kernel that is out of bounds and renormalizing

that kernel to have the appropriate mass. We record how often this is done as frequent
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boundary normalization is symptomatic of a substantial boundary leakage problem.
Although the boundary renormalization procedure results in some bias in the simulated
density in the neighborhood of the boundary, this was required for less than 1% of total
realizations for the streamflow data sets on which the model was evaluated.

Simulations from this nonparametric approach retain the marginal and joint density
structure of the historical time-series, including nonlinearities and state-dependence. One
can also analytically calculéte the marginal distribution and the values of the NP1 model
mean, standard deviatio;z, skewness and lag 1 correlation from the kernel density estimate
(Equation 3.18). These are given in Appendix B and compared in the results below to
sample statistics from the historical data.

This method has been presented from the perspective of formally estimating the
underlying probability density function and then sampling from it. However, when
viewed operationally one sees that simulation of each streamflow value effectively
amounts to picking a prior data pair (x;, X;.1) that is nearby, i.e., x;_1 near to X;_;. The
probability of picking a particular pair falls off with distance according to Equation
(3.21a). Then the value x; is perturbed (Equations 3.21c and 3.22) by an amount related
to the density estimate bandwidth. It is this perturbation that is responsiblé for the
inflation of variance given by Equation (B.5). This method can therefore also be viewed
as a smoothed bootstrap. The bootstrap [Efron, 1979; Efron and Tibishirani, 1993] is a
statistical method that involves resampling the original data (with replacement) that has
applications in estimation of confidence intervals and quantification of parameter
uncertainty [Tasker, 1987; Hardle and Bowman, 1988; Woo, 1989; Zucchini and
Adamson, 1989]. The classical bootstrap assumes data are independent and identically
distributed. The nearest-neighbor bootstrap method presented by Lall and Sharma

[1996] is appropriate for bootstrapping dependent data. It is similar to the approach here
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in that a prior data pair nearby is picked using a discrete kernel based on a local Poisson
approximation to the density function. It differs in that there is no perturbation of the
selected point. Consequently, it only reproduces streamflow values that have been

observed. The perturbations in our approach effectively fill in the gaps.

Testing with Synthetic Data

In order to evaluate the ability of our model to recover structure from known linear
and nonlinear parametric models, we conducted tests using two synthetic models. The
purpose of these experiments was to verify the performance of the NP1 model where the
true model is known. The first model used was a linear autoregressive order 1 (AR1)
model of the type commonly used to model streamflow. The second was a Self-Exciting
Threshold Autoregressive (SETAR) model [Tong, 1990]. The following procedure was
used in both cases:

(1) Generate 100 sample records of length 80 from the true model (AR1 or
SETAR).

(2) For each sample record, generate 100 realizations, each of length 80, from the
NP1 model. )

This provides 10,000 realizations (100 NP1 realizations from each of the 100
sample records) that were used to evaluate how well the NP1 model reproduces statistics
of the samples it is based on and the underlying population statistics. Since all
realizations are the same length as the record from which they are generated, the 100
realizations from each record provide estimates of the natural sampling variability
associated with that record length. Statistics such as the mean, standard deviation, lag 1
correlation, and skewness were estimated, as well as marginal and joint kernel density

estimates from the sample records and realizations.
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Boxplots are used for the graphical comparisons. These consist of a box that
extends over the interquartile range of the quantity being plotted, estimated from the 100
realizations. The line in the center of this box is the median and whiskers extend to the
5% and 95% quantiles of the compared statistic.

Tests with ARI Data
The AR1 model used was:

X =0.5 X;.1 +0.866 W; (3.23)

where W was a Gaussian random variate with mean zero and standard deviation one.
For brevity, comparisons for the standard statistics are not given. The mean, variance,
lag 1 correlation, and skewness of each AR1 sample were well reproduced in the
simulations based on it. These values were also close to the corresponding model
statistic.

Figure 3-4 shows the marginal density estimates from one of the sample records
and corresponding 100 NP1 simulations. Shown are the true Gaussian density function,
the NP1 model marginal density function (from Equation B.1), and a univariate kernel
density estimate based on the sample records, with the boxes giving the univariate kernel
density estimates for the 100 NP1 simulations. To ensure that these univariate kernel
density estimates are comparable, we used the same bandwidth for each of them, namely
the median bandwidth from the set of bandwidths obtained by applying the LSCV
procedure to each simulation. Figure 3-4 shows that the marginal density of the data is

reproduced quite well by the simulations.
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The Integrated Square Error (ISE, see Equation 3.9) of the joint density of each
sample record provides a measure of model error. Averaging this across the 100 sample
records, we get an estimate of MISE, which was 0.0093. The corresponding MISE from
fitting an AR1 model joint density to each sample is 0.0046.

Bivariate density estimates were calculated using the procedure described earlier,
for each of the 10,000 NP1 realizations. The ISE for each of these was calculated and
the average is 0.0161, which is greater than the 0.0093 given above. This reflects the
additional error introduced by reestimating the density function from simulated values. It
is representative of the difference between NP1 simulations and the underlying model.
This average ISE is still acceptably small. These results show that the NP1 model

performs adequately at reproducing the properties of an AR1 process.

Tests with SETAR Data
The SETAR [Tong, 1990] model used was:

Xt =04 +0.8 Xt.l + Wt ith.l <0.0
X¢=-1.5-0.5X¢.] + W; if X¢.1 > 0.0 (3.24)

where Wy was N(0,1). This is a state-dependent time series model with parameters that
depend on the system state as determined by a threshold. This model may be
representative of the monthly streamflow time series one could get from threshold-driven
hydrologic processes such as snowmelt and evapotranspiration. It is worth noting that in
one of the results given in the next section (see Figure 3-6b), the relationship between

July and August streamflow is nonlinear in a manner similar to this SETAR model.
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As with the AR1 case, mean, variance, lag 1 correlation, and skewness of the each
SETAR sample were well reproduced in the simulations based on it. These values were
also close to the corresponding model statistic.

Figure 3-5 shows the underlying true joint density f(X¢, X;-1) for the SETAR
model in (3.24), the bivariate kernel density estimate for one SETAR sample record, and
the density estimate of the NP1 simulations averaged over all 10,000 realizations. The
line in Figure 3-5a shows the true conditional mean from Equation (3.24) with W, set to
0. Figure 3-5b shows an estimate of the conditional mean based on the sample record
obtained using LOESS [Cleveland and Deviin, 1988]. LOESS is a locally weighted
regression smoother that calculates a weighted least square fit (assigning weights using a
tri-cubic weight function centered at the point of estimation) at each data point based on a
fixed number of nearest neighbors. The number of nearest neighbors (expressed as a
fraction of the total number of data points, called “span”) used to compute the LOESS
smooth was chosen as the one that resulted in an optimal value of Mallow’s Cp. The
function “loess,” available in the software package Splus [Chambers and Hastie, 1992],
was used in our calculations. The LOESS smooth is plotted to show that the sample
record and nonparametric density function based on it reproduce the changé in
conditioning structure (with some smoothing) as the threshold is crossed. The illustrated
fit based on an optimal Mallow’s Cp has a span of 0.75. The kernel density estimate
(Figure 3-5b) has an ISE (see Equation 9) of 0.0084 that was evaluated by integrating the
squared differences between Figures 3-5a and b. Averaging across the 100 sample
records, we obtain an estimate of the NP1 model fitting MISE as 0.0082. The
corresponding MISE from fitting an AR1 joint density to each sample is 0.0131.

As for the AR1 example, bivariate density estimates were calculated using the

procedure given earlier in this chapter, for each of the 10,000 realizations. The ISE for
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each of these was calculated and the average is 0.010, which is greater than the NP1
model MISE (0.0082) due to the additional error added by reestimating the density
function from simulated values. It is again representative of the difference between NP1
simulations and the underlying model. Figure 3-5c shows the average density function
estimated from the 10,000 realizations. This captures the essential nonlinearity of the
SETAR model despite smoothing over the discontinuity. No model from the MGTM
class of models is able to reproduce samples that exhibit such nonlinear structure. A
bivariate Gaussian distribution with the true mean and covariance of the model in
Equation (3.24), i.e., there are no fitting errors, has ISE relative to Figure 3-5a of
0.0119, larger than that obtained from the NP1 model fits with 80 data points.
Asymptotically the NP1 kernel density estimate will converge to the underlying SETAR
model exactly, i.e., with no fitting errors. This reiterates the point that model
misspecification, for example, by selection of the bivariate Gaussian distribution,
precludes a model from convergence to whatever the underlying distribution may be.

Table 3-1 shows the state-dependent correlation statistics (described in Appendix A)
for NP1 model simulations based on SETAR data. Note how well the NP1 model
reproduces the big difference between above median and forward and below median and
forward correlations.

It is clear from the synthetic examples presented that the NP1 model is able to: (1)
approximate the underlying joint distribution of the data; (2) reproduce the nonlinear
structure suggested by the data in model simulations; and (3) approximate both linear and
nonlinear dependence between the variables involved. No assumptions about marginal

distributions or normalizing transforms are required.
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Application of NP1 to Simulation
of Monthly Streamflow

This section describes the application of the NP1 model to simulate seasonal
streamflow sequences. Assume we have s seasons (or months, s = 12) and n years of
data (n x s data values). The model applied to seasonal sequences then consists of s (one
for each season) bivariate density functions estimated directly from the historical data.
For all seasons except the first, the random vector (X{, X¢.1) is replaced by (XtJ, Xt j-
1), where subscript t denotes the year and j denotes the season. For the first season the
conditioning flow is the flow in the last season of the previous year and the vector is
(X¢,1, Xt-1,¢)- Simulations proceed sequentially from density estimates for one season
pair to the next.

Results from an AR1 model representative of current hydrologic practice are also
presented for comparison to NP1 simulations. SPIGOT, a synthetic streamflow
generation software package developed by Grygier and Stedinger [1990], uses four
choices for monthly marginal probability densities. These are Gaussian, two parameter
Lognormal, three-parameter Lognormal, and approximate three-parameter Gamma
distributions. The parameters for each distribution are estimated by matching moments
and the best fitting distribution chosen by measuring the correlation of observations to the
fitted distribution quantiles (Filliben correlation statistic, Grygier and Stedinger [1990)).
Here we used the same pro.cedure as SPIGOT to fit a marginal probability distribution
and to obtain a normalizing transformation for each month. Then the AR1 model with
seasonally varying coefficients given in Equation (3.2) was applied to the transformed
monthly flows.

Both the NP1 and AR1 (with normalizing transformations) models were applied to
an 83-year (1911 to 1993) record of monthly streamflow in the Snake River at Weiser,
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Idaho, located at 44° 14' 44" N and 116° 58' 48" W at an elevation of 2086 ft above
Mean Sea Level, as recorded by the U.S. Geological Survey (USGS Station Number
13269000). This data set is one of many streamflow data sets with which we have tested
the model, all with satisfactory results. We chose to present results from the Snake River
because it illustrates well some of the points we want to emphasize.

Figure 3-6 shows the joint density for the March-April and July-August month
pairs, using the kemnel estimator described previously. The NP1 model simulates
streamflow from these density functions. It is notable that the LOESS fit for the July-
August joint density is highly nonlinear and resembles the conditional expectation of the
SETAR example presented earlier in Figure 3-5b.

One hundred simulations, each with a length of 83 years (initialized with the
average flow of the first month, with a warm-up period of 1 year), were made using both
the NP1 and AR1 models. Results comparing the simulations from NP1 and AR1 are
presented below.

Boxplots of selected monthly statistics are shown in Figures 3-7 to 3-10. The mean
flows of the AR1 and NP1 simulations (Figure 3-7) match well those of the streamflow
record. The annual means also match well. Figure 3-8 shows standard deviations of
flows for the AR1 and NP1 simulations. The standard deviations of the NP1 simulations
are slightly inflated with respect to the historical record, as expected from Equation (B.S5).
The standard deviations of AR1 simulations compare well, although some bias is visible
in May simulations. Annual standard deviations, though not modeled directly by either
approach, compare well with the historical value. Figure 3-9 shows boxplots of the
correlation between sequential month pairs. The NP1 model reproduces lag 1 correlations
without any bias as proved in Equation (B.7). The AR1 simulations approximate the lag

1 correlation well, although some bias is present depending on which transformation (or
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which marginal distribution) is used. Skewness is reproduced well in NP1 simulations
(Figure 3-10) although a small downward bias (Equation B.12) is evident. AR1 model
simulations sometimes have a higher skewness than observed, another indication of
difficulty in fitting the marginal distributions.

The marginal distributions for each month were also compared. Selected marginal
distributions are shown in Figure 3-11. In these figures, the model underlying density
function (Equation B.1 in the case of NP1 or one of the SPIGOT [Grygier and
Stedinger, 1990] densities in the AR1 case) is shown as a dashed line. The solid line is
a univariate kernel density estimate applied to the original data and the boxes represent the
range of univariate kernel density estimates applied to the 100 simulatibns. For these
univariate kernel density estimates, the same bandwidth is used for all, chosen as the
median of the set obtained by minimizing LSCV over the 100 simulations. Here the
univariate kernel density estimator is being used as a plotting tool to compare observed
and simulated data. The dots on the axis represent the historical data. These figures
show that for some months the best fitting SPIGOT marginal distribution is inadequate.
In particular, the Lognormal density used by the seasonal AR1 model does not compare
well with the historical July streamflow data, and therefore simulations baséd on it do not
match.

In addition to the Snake River example, it is instructive to see how the NP1 and
AR1 models reproduce the bimodal marginal distributions of streamflow for the Beaver
River data discussed earlier (see Figure 3-1). Figure 3-11c shows July marginal
distributions for this station. Note how the NP1 model is able to reproduce the
bimodality, whereas the fitted three-parameter Gamma distribution does not. Overall we

find that the common normalizing transformations are unable to capture a lot of the
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structure, in particular bimodality, sometimes present in data. This structure is captured
by the kernel density estimates.

Recall that the joint density of July-August flows (Figure 3-6b) indicated a highly
nonlinear conditional expectation. The associated lag 1 correlation (Figure 3-9) is much
lower than for other months. Looking at Figure 3-6b, one sees that the subset of the data
with July Streamflow less than 12,000 cfs exhibits a strong positive correlation, whereas
above this value the data appears to be weakly negatively correlated. Itis possible that
such flows are state-dependent. To quantify the dependence of autocorrelation on the
magnitude of flow, we split each series into flows above and below the median and then
calculated the state-dependent correlation statistic described in Appendix A. These results
are illustrated in Figure 3-12. The historical data (solid line) has significant differences
(at the 95% level by a hypothesis test for equality of two sample correlations, see
Appendix A for details) between forward above and below median correlations for the
following five month pairs: Oct-Nov, Dec-Jan, Feb-Mar, Jul-Aug, Aug-Sep.
Reproduction of these statistics requires a state-dependent or nonlinear model.
Correlations of streamflow above and below median are modeled effectively by the NP1
approach. Simulations from the AR1 approach are unable to accommodate such
nonlinear dependence. Particularly notable is the inability of AR1 simulations to model
above or below median correlations for July (correlation between above or below median
flows in July and succeeding August flows). Obviously the transformations to Gaussian
from the set of marginal distributions used in the AR1 model are inadequate in dealing
with the state-dependent July-August month pair flows. _

The practical use of synthetic streamflow simulations is often the evaluation of the
storage capacity of reservoirs required to support a certain yield. For a given streamflow

sequence (observed or simulated) the storage required to support a specified yield can be



86

obtained using the sequent peak algorithm [Loucks et al., 1981]. Vogel and Stedinger
[1988] compared the Root Mean Square Error (RMSE) and bias of this storage statistic
computed directly from data and showed the improvements in precision that result from
using stochastic streamflow models. Here reservoir storages required to support a firm
yield that is 80% of the mean annual flow were estimated for both AR1 and NP1
simulations of Snake River streamflow. Monthly demand fractions given in Lall and
Miller [1988] were used. Standardized bias and RMSE estimates for both models,
relative to the storage required to support a given yield for the historical record, are given

in Table 3-2.

Bias / Sy, = (S, ;,1—§.S ’s, (3.25)
Ly, -s,
RMSE/S, = ¥ 1-21( ) (3-26)
S

h

where Sy, denotes the historical storage, SSi is the storage estimated from the i’th AR1 or
NP1 realization and n, is the number of realizations. As one can see from Table 3-2, the
NP1 bias and RMSE are lower than those for AR1 simulations. The NP1 model is better

at providing simulations with storage properties comparable to the historical data.

Discussion and Conclusions

We also computed and checked many other statistical attributes of the NP1 and AR1
simulations, but space limitations prevent presentation of the results. The simulated
autocorrelation function (acf) for each month (not shown) showed that both models do

not model correlations higher than lag 1 very well. In some months, lag 2 and 3
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correlation was preserved though both NP1 and AR1 model correlations decrease to
essentially zero by lag 7. Longer range dependence quantified in terms of the annual
correlation coefficient or Hurst coefficient [Hurst, 1951] was not preserved by either
model. Although the bias and errors in the reservoir storages given in Table 3-2 are
smaller for the NP1 simulations than the AR1 simulations, they are still relatively large,
indicating that the order one dependence assumed in both models is inadequate to model
reservoir storage for these data. These all indicate the need for models that capture higher
order dependence, such as multivariate or disaggregation models.

The results presented here support the nonparametric approach as a feasible
alternative to parametric approaches used to model streamflow. The nonparametric
approach presented here is consistent and robust and reproduces not only the linear
statistics modeled by the AR1 model but also a broader set of properties based on
additional distributional information. The skewness, bimodality, and dependence of
correlations on the flow magnitude, when present in the data, can be adequately modeled.
One could no doubt find better marginal distributions to use with the AR1 model and
improve on some of the AR1 simulations. However, the NP1 approach is effective in
sidestepping these difficult model and distribution selection issues that are often
somewhat arbitrarily resolved and provides a method that is easy to use, and adapts well
to the data.

Although the examples presented here used an order one dependence structure, it is
easy to extend the model to higher order dependence. Cross validatory procedures
[Eubank, 1988] can be applied to evaluate the benefit gleaned from including additional
lags in the model dependence structure. These are somewhat analogous to use of
Akiake’s information criterion in linear models. We intend to evaluate this further in

future work. Future work will also apply the nonparametric approach to multivariate
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problems in stochastic hydrology, specifically to the development of nonparametric
analogs to multivariate ARMA and disaggregation models. The purpose here was to
introduce this approach in a simple univariate setting with order one dependence and
show that results are satisfactory when compared to current hydrologic practice.

We are convinced that nonparametric techniques have an important role to play in
improving the synthesis of hydrologic time series for water resources planning and
management. They can capture the dependence structure present in the historical data,
without imposing arbitrary linearity or distributional assumptions. They have the
capability to reproduce nonlinearity, state-dependence, and multimodality while
remaining faithful to the historical data and producing synthesized sequences statistically

indistinguishable from the historical sequence.
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Table 3-1. State-Dependent Lag 1 Correlations for NP1 Simulations from a SETAR
Model

Single sample record

Statistic Record NP1 Simulation Statistics

5 % Quantile Median 95 % Quantile

r 0.164 -0.094 0.160 0.329
raf (above and forward) -0.528 -0.595 -0.373 -0.202
rpf (below and forward) 0.504 0.167 0.425 0.620
rab (above and back) 0.172 -0.056 0.161 0.380
rpp (below and back) 0.310 -0.215 0.239 0.490

Average over 100 sample records and 10,000 realizations

Statistic 100 Records NP1 Simulation Statistics

5 % Quantile Median 95 % Quantile

r 0.074 -0.105 0.041 0.226
raf (above and forward) -0.555 -0.557 -0.396 -0.164
rpf (below and forward) 0.494 0.187 0.377 0.558
rap (above and back) 0.165 0.000 0.131 0.305

rpp (below and back) -0.020 -0.219 -0.039 0.169
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Table 3-2. Reservoir Capacities Evaluated for 100 AR1 and NP1 Model Realizations
for a Yield of 0.8 Mean Annual Flow

Model Bias/Sy, RMSE/S),

ARl 0.4075 0.4295
NP1 0.2619 0.3282
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the x-axis denote the individual data points.
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Form bivariate sample set x; = (xp xj.1i=1...n
e-g. X1 =(x1, X), X3 = (X2, X1) ec.
The density estimate is
E S%%N v defined in terms of the
Estimate bandwidth A using list of sample vectors x;
PHASE Least Squares Cross Validation and the kernel parameters
. (equation 15) Aands.
timate covariance S.
(Initialize =0, X=0=X)
(Given X-1 evaluate wj associated with each kemel]
(See equation 21a)
SIMULATION ‘ This ,
is procedure samples
PHASE Xt from f(Xt | Xt_l).
l Sample an observation x; with probability w;. ’ (See equations 20 to 22)
Simulate X¢ from i'th kemnel slice
X[ = bi + l‘/-é' Wt
where W is N(0,1)
Correct for negative simulations.

- O

Figure 3-3. Flowchart of NP1 model.
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Figure 3-5. Bivariate joint density of: (a) SETAR model in (3.5). The straight lines
denote the conditional mean of the model. (b) SETAR model sample. Dots (.) represent
individual observations in SETAR sample. The line is a LOESS smooth through the
data. (c) NP1 simulations. This is the average of the kemel density estimates from all

10,000 realizations.
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Figure 3-6. Underlying bivariate densities in NP1 model simulations for selected
month pairs. The dots (.) represent observations. (a) March-April flows. The line
represents a LOESS smooth with a span of 0.95 corresponding to an optimal Mallow’s
Cp. (b) July-August flows. The line represents a LOESS smooth with a span of 0.7
corresponding to an optimal Mallow’s Cp.
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Figure 3-11. Marginal density estimates for selected months streamflow. The solid
line is a univariate kernel density estimate applied to the original data. The model
underlying density function (Equation B.1 in the case of NP1 or one of the SPIGOT
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univariate kernel density estimates applied to the 100 simulations. (a) April AR1 and
NP1 marginal density estimates. A three-parameter Lognormal distribution is used for the
AR1 model fit. (b) July AR1 and NP1 marginal density estimates. A three-parameter
Lognormal distribution is used for the AR1 model fit. (c) July AR1 and NP1 marginal
density estimates from the Beaver River at Beaver, Utah (USGS Station Number
10234500). A three-parameter Gamma distribution is used in the AR1 model fit.
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CHAPTER 4
DISAGGREGATION PROCEDURES FOR STOCHASTIC
HYDROLOGY BASED ON NONPARAMETRIC

DENSITY ESTIMATION!

Abstract

Synthetic simulation of streamflow sequences is important for the analysis of water
supply reliability. Disaggregation models are an important component of the stochastic
streamflow generation methodology. They provide the ability to generate multiseason
and multisite streamflow sequences that maintain the proper interdependence between the
aggregate and disaggregate flows, thus allowing a model to span scales in time or space.
In recent papers we have suggested the use of nonparametric methods for streamflow
simulation. These methods provide the capability to synthesize time series dependence
without a priori assumptions as to the probability distribution of streamflow. They
remain faithful to the data and can approximate linear or nonlinear dependence. In this
chapter we extend the use of nonparametric methods to disaggregation models. We show
how a kernel density estimate of the joint distribution of disaggregate flow variables can
form the basis for conditional simulation based on an input aggregate flow variable. This
methodology preserves summability of the disaggregate flows to the input aggregate
flow. We show through applications to synthetic data and streamflow from the Snake
River how this conditional simulation procedure preserves a variety of statistical

attributes.

1Coauthored by Ashish Sharna, David G. Tarboton, and Upmanu Lall.
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Introduction

A goal of stochastic hydrology is to generate synthetic streamflow sequences that
are statistically similar to observed streamflow records. Such synthetic sequences are
needed to analyze alternative designs and policies against a range of sequences that are
likely to occur in the future. In studies involving large water resources systems it is often
necessary to correctly represent the variation of streamflow across various sites and
across the different seasons of the year. This becomes especially important where there
is over year storage or sharing and transfers between different sites. A methodology that
models the aggregate (annual or main stream) flow and the relation with its tributary or
seasonal components becomes important. Disaggregation is one such methodology that
preserves the dependence within the disaggregate flow components as well as their
relation with the aggregate flows. The motivation behind disaggregation is the desire to
parsimoniously represent processes at both the aggregate and disaggregate scales.

Disaggregation was first introduced by Valencia and Schaake [1972] and further
developed by many others [Mejia and Rousselle, 1976; Curry and Bras, 1978; Lane,
1979; Salas et al., 1980; Svanidze, 1980; Stedinger and Vogel, 1984; Bras and
Rodriguez-Iturbe, 1985; Stedinger et al., 1985; Grygier and Stedinger, 19é8]. An
appropriate model is first used to simulate the aggregate level streamflow variable, which
is then subdivided into component flows using the disaggregation approach. Since the
aggregate flows are simulated using a separate model, representation of the dependence
structure at the aggregate level is the task of the aggregate level model and is not part of
the disaggregation procedure discussed here.

Historically the disaggregation approach has been used to subdivide annual flows
into seasonal and monthly streamflow, and basinwide aggregate streamflow into the

streamflow in individual tributaries. In the first case, disparate time scales are involved,
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and in the latter, disparate spatial scales. Several applications require that the
disaggregate variables add up to the aggregate variable. This is called summability and

is required, for example, for seasonal flows that sum to an annual total. Summability is
not a physical requirement for tributary flows with respect to a basin wide aggregate flow
due to channel losses, gains and time delays. A “gains” variable representing the
difference between aggregate and sum of disaggregate variables may be used in these
cases. Combinations of time and space disaggregation have also been used, as well as
disaggregation based on multiple (vector) aggregate variables.

In this chapter, we present a nonparametric approach for disaggregation of an
aggregate variable to a set of disaggregated variables. Although our presentation
considers the disaggregation of a single aggregate variable into a set of disaggregate
variables, extensions to disaggregation from vectors is straightforward. The
methodology is the same for temporal and spatial disaggregation. Specifically, we
consider a d-dimensional vector X = X1, X, ... Xd)T with aggregate variable Z = X4
+ Xy +... + X4. The problem is posed in terms of sampling from the conditional

probability density function.
f(X1Z) = fX, Z)/If(X, Z) dX 4.1)

In this equation, f(X, Z) is the joint probability density function of the vector X of
disaggregate variables (monthly or tributary streamflows) and Z the aggregate variable
(annual or main stem streamflow) obtained from an aggregate model at each aggregate
time step. The denominator above is the marginal probability density function of the
aggregate variable Z derived by integrating the joint distribution over all the components

of X. We use kemel density estimation techniques to estimate the joint and conditional
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densities in (4.1). These methods are data adaptive, i.e., they use the historical data (the
historical aggregate and component time series) to define the probability densities.
Assumptions as to the form of dependence (e.g., linear or nonlinear) or to the probability
density function (e.g., Gaussian) are thus avoided.

This chapter is organized as follows. First we review the historic application of
disaggregation models noting that they are special cases of the general conditional
simulation problem of Equation (4.1). We discuss drawbacks associated with these
approaches and use them to motivate the more general approach based on kemel density
estimates proposed here. A brief discussion of multivariate kernel density estimation and
the kernel estimator used in the disaggregation model is given next. This is followed by a
description of our nonparametric disaggregation approach. The performance of the
nonparametric disaggregation procedure is then evaluated by applications to synthetic data
from a known nonlinear model and to streamflow from the Snake River at Weiser, Idaho
(USGS Streamflow Gauging Station Number 13269000). Results from our approach are
compared to those from SPIGOT [Grygier and Stedinger, 1990], a popular
disaggregation software based on linearizing transformations of the historical streamflow

time series.

Background
Historically, practically all applications of the disaggregation approach to

streamflow synthesis have involved some variant of a linear model of the form

X, =AZ+BV, 42)
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Here X, is the vector of disaggregate variables at time t, Z; the aggregate variable and v,
a vector of independent random innovations, usually drawn from a Gaussian distribution.
A and B are parameter matrices. A is chosen or estimated to reproduce the correlation
between aggregate and disaggregate flows. B is estimated to reproduce the correlation
between individual disaggregate components. The many model variants in the literature
make different assumptions as to the structure and sparsity of these matrices and which
correlations the model should be made to directly reproduce. Mejia and Rouselle [1976]
suggest adding a term C X;_1 to reproduce correlation between disaggregate flows in the
current and prior time steps. Stedinger and Vogel [1984] show that this results in an
inconsistency because the parameter estimation procedures assume correlation between
the current aggregate and prior disaggregate variables that cannot be guaranteed to be
represented by the aggregate/disaggregate model combination. They instead suggest
approximating the correlation structure between X and X, _; by building a correlation
structure into the V, series. It can be shown [Bras and Rodriguez-Iturbe, 1985] with a
model of the form of Equation (4.1) that summability of the disaggregate variables to the
aggregate variables is guaranteed.

Historically the focus of stochastic disaggregation models has been on reproducing
the correlation between variables, assuring summability and matching the marginal
distributions through appropriate normalizing transformations. The key idea is to
recognize that Equation (4.2) provides a mathematical framework where a joint
distribution of disaggregate and aggregate variables is specified. Parameters of this model

are estimated so as to approximate selected moments of the joint distribution of the

observed historical data.
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Some of the drawbacks in such an approach are:

(1) Since Equation (4.2) involves linear combinations of random variables, it is
mainly compatible with Gaussian distributions. Where the marginal distribution of the
streamflow variables involved is not Gaussian (e.g., perhaps with significant skewness),
normalizing transformations are required for each streamflow component. Equation (4.2)
would then be applied to the normalized flow variables. It is difficult to find a general
normalizing transformation and retain statistical properties of the streamflow process in
the untransformed multivariable space. This issue is discussed in the context of a first-
order Markov model for streamflow by Tarboton et al. [1993]. Specifically with respect
to disaggregation, normalization transformations destroy the guaranteed summability of
disaggregate flows to aggregate flows, so where summability is important, various
empirical adjustment techniques are used [Grygier and Stedinger, 1988]. However,
these are rather ad hoc and can introduce bias in the model statistics.

(2) The linear nature of Equation (4.2) limits it from representing any nonlinearity
in the dependence structure between variables, except through the normalizing
transformation used. Given the current recognition of the importance of nonlinearity in
many physical processes [Tong, 1990; Schertzer et al., 1991], we prefer at the outset
not to preclude or limit the representation of nonlinearity.

In the spirit of our recent work [Tarboton et al., 1993; Lall and Sharma, 1996],
the purpose of this chapter is to show how nonparametric techniques can be used with the
disaggregation methodology. Much like the traditional approaches, our approach
attempts to approximate the joint probability distribution of flow variables. However,
instead of using the linear dependence structure of Equation (4.2), with a priori
assumptions as to marginal distributions, or marginal distributions from a narrow set of

common distributions, we estimate the necessary joint probability density functions
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directly from the historic data using kernel density estimates. These methods (described
in next section) sidestep the difficulties associated with skewness and normalizing
transformations and also retain summability. The nonparametric techniques also admit
nonlinear dependence. The methods are data driven and relatively automatic so nonlinear
dependence will be incorporated to the extent suggested by the data. Difficult subjective
choices as to appropriate marginal distributions and normalizing transformations are
avoided. The disadvantages outlined above are thus overcome by the methods we

present.

Kernel Density Estimation

Kermnel density estimation entails a weighted moving average of the empirical
frequency distribution of the data. Most nonparametric density estimators can be
expressed as kernel density estimation methods [Scott, 1992]. In this chapter, we use
multivariate kernel density estimators with Gaussian kernels and bandwidth selected
using least squares cross validation [Scott, 1992]. This bandwidth selection method is
one of many available methods. Our choice of the bandwidth estimator is based on a
simulation study (A. Sharma, unpublished report, 1996) that compared various cross
validation estimators for samples of sizes typically encountered in hydrology. Our
methodology is intended to be generic and should work with any bandwidth and kernel
density estimation method. This section reviews kernel density estimation firstin a
univariate then in a multivariate setting and gives details of the least squares cross
validation (LSCV) procedure for estimating bandwidth. For a review of hydrologic
applications of kernel density and distribution function estimators, readers are referred to

Lall [1995]. Silverman [1986] and Scort [1992] are good introductory texts.
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A univariate kernel probability density estimator is written as:

tw=Eatx(5)
f(x) = FZIE K 5 4.3)

where xj, i=1, . ., n, are the observed data; K() is a kernel function that must integrate to
1; and h is the bandwidth that defines the locale over which the empirical frequency
distribution is averaged. Many possible kemel functions are given in texts such as
Silverman [1986] and Scott [1992]. Silverman [1986] notes that the choice of the

kernel function does not result in appreciable differences in the mean integrated square
errors of the density estimates. This choice is more often based on considerations such as
the computational effort or the degree of differentiability desired in the resulting density.

The Gaussian kernel function, a popular and practical choice, is used here.

=L arn(x?
K(x) = Eexp( x72) (4.4)

A multivariate extension of (4.3) with a multivariate Gaussian kernel for a vector x

in d dimensions can be written as:

X)=q exp\ - (4.5)
n& (21t)d/2 det(H)m 2

where det(.) denotes determinant, n is the number of observed vectors Xi,andHisa

symmetric positive definite d x d bandwidth matrix [Wand and Jones, 1994]. The
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density estimate is thus formed by summing multivariate Gaussian kernels with a
covariance matrix H, centered at each observation x;.

A useful specification of the bandwidth matrix H is:
H=A2§ (4.6)

Here, S is the sample covariance matrix of the data and A2 prescribes the bandwidth
relative to this estimate of scale. These are parameters of the model that are estimated
from the data. The procedure of scaling the bandwidth matrix proportional to the
covariance matrix (Equation 4.6) is called “sphering” [Fukunaga, 1972] and ensures that
all kernels are oriented along the estimated principal components of the covariance matrix.

The choice of the bandwidth (h or A) is an important issue in kernel density
estimation. A small value of the bandwidth (h or A) can result in a density estimate that
appears “rough” and has a high variance. On the other hand, too high a bandwidth
results in an “oversmoothed” density estimate with modes and asymmetries smoothed
out. Such an estimate has low variance but is more biased with respect to the underlying
density. This bias-variance trade-off [Silverman, 1986] plays an important role in
choice of h.

Several methods have been proposed to estimate the “optimal” bandwidth for a

given data set. These methods are based on evaluation of factors such as bias, E{f(x)-

)}, variance, Var(£(x)}, Mean Square Error (MSE), E{[fx)-F)]2}, Integrated
Square Error (ISE), and Mean Integrated Square Error (MISE) of the estimate.

N 2
ISE = jd (f(x)-f(x)) dx 4.7
R
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. 2
MISE =E | (f(x)-f(x)) dx (4.8)
d
R

One choice for the bandwidth is one that directly minimizes a first-order Taylor
series approximation of the MISE (4.8) if the true distribution were known. Fora
Gaussian distribution with Gaussian kernel functions (estimator defined by Equations

(4.5) and (4.6)), Silverman [1986] gives the Gaussian reference bandwidth (denoted
Aref) as:

1/(d+4)
A = ( 4 ) ~1/(d+4)
ref ~ \ d+2 a (4.9)

In the univariate case (d=1), this translates to h = 1.06 & n-1/5 where G is an estimate of
the standard deviation (Silverman advocates a robust estimate) of the data. Such a
bandwidth is optimal only for data arising from a known Gaussian distribution.

Data-driven methods are used in cases where the underlying distribution is not
known. They minimize estimates of the ISE or MISE formed only from the; data. Least
squares cross validation (LSCV) [Silverman, 1986] is one such method that is based on
minimizing an estimate of the ISE of the kernel density estimate.

Sain et al. [1994] provide an expression for the LSCV score in any dimension with
multivariate Gaussian kernel functions and H a diagonal matrix. Adamowski and
Feluch [1991] provide a similar expression for the bivariate case with Gaussian kernels.

Here we generalize these results for use with the multivariate density estimator (4.5) to:
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x| expeLya) 42+ exp(L/2)

1
1+ -
= n n-1
LSCV(H) = - —
(2/m)" det(H) (4.10)
where
Li; = (- x) TH (x; - x)) (4.11)

We use numerical minimization of (4.10) over the single parameter A with bandwidth
matrix from Equation (4.6) to estimate all the necessary probability density functions.
We recognize that LSCV bandwidth estimation is occasionally degenerate, so based on
suggestions in Silverman [1986] and the upper bound given by Scott [1992], we
restrict our search to the range Agef4 to 1.1Aef.
Nonparametric Disaggregation
Model, NPD

In this section a d-dimensional disaggregation model (denoted NPD) is developed.
The model can be used to simulate d-dimensional disaggregate vectors X, based on an
input aggregate series Z;. Z, can be obtained from any suitable model for the aggregate
streamflow series; however, we recommend a nonparametric model such as those
described in Tarboton et al. [1993] or Lall and Sharma [1996]. The subscript t above
was only shown to reinforce the similarity to historic models like Equation (4.2). Since
the same procedure is applied for each time step, from here on the subscript t on X, is

dropped to save notation.
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Disaggregation is posed here in terms of resampling from the conditional density
function of Equation (4.1). We need a model that, given Z, provides realizations of X.
This model is to be based on (calibrated from) n observations of X and Z, denoted x; and
z;. The components of x; are the historical disaggregate components, such as monthly,
seasonal, or tributary flows that comprise the historical aggregate z;. To use Equation
(4.1) an estimate of the d+1 dimensional joint density function X1, Xy, .. Xy, Z) is
required. However, because of summability this has all its mass on the d-dimensional
hyperplane defined by:

X1+X2+...+Xd=Z 4.12)
This probability density can then be represented as:
fX1, Xy, .. X4, Z) = £X1, X3, ... Xg) 8(Z - X - X5 ... -X) 4.13)

where 8(.) is the dirac delta function. Kemel density estimation is used to estimate (X,

X9, ... X4) based on the data. The conditional density function is then:

8(Z-X1-X2- -Xd) f(Xl, X2, Xd)

f(Xl, Xz’ Xd) dA
over plane X1+X2+...+X d=Z

f(Xl, xz, .. X dlZ) = (4.14)

For a particular Z, this conditional density function can be visualized geometrically as the
probability density on a d-1 dimensional hyperplane slice through the d-dimensional
density f(Xy, Xj, ... Xg), the hyperplane being defined by X {+Xy+ ... + X4 =Z. This
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is illustrated in Figure 4-1, for d = 2. There are really only d-1 degrees of freedom in the
conditional simulation. The conditional p.d.f. in (4.14) can then be specified through a
coordinate rotation of the vector X = (X1, Xy, ... Xg)T into a new vector Y = (Y 1 Y2,
... Yg) whose last coordinate is aligned perpendicular to the hyperplane defined by
(4.12). Gram Schmidt orthonormalization [Lang, 1970] is used to determine this
rotation.

Once this rotation has been done, simulation amounts to straightforward conditional
resampling from a multivariate density function as has been demonstrated before
[Tarboton et al., 1993]. The approach used does not require full evaluation of the
conditional density function and basically amounts to perturbed resampling of the data.

Gram Schmidt orthonormalization is a procedure for determining an orthonormal
set of basis vectors for a vector space from any suitable basis. The standard basis (basis
vectors aligned with the coordinate axes) is orthonormal, but does not have a basis vector
perpendicular to the conditioning plane defined by (4.12). We therefore drop one of the
standard basis vectors and replace it by a vector perpendicular to the conditioning plane.
The basis set is now not orthonormal. We then apply the Gram Schmidt procedure to
obtain an orthonormal basis vector set that includes a vector perpendicular to the

conditioning plane. The result is a rotation matrix R such that
Y=RX 4.15)

where R has rows that consist of the basis vectors for the rotated coordinate space.
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R=| - (4.16)

Denote the standard basis as

i; =(1,0,0,...0)T

i =(0,1,0,..0)T 4.17)
ig=00,0,..0,nT

Define
eq = (144, 144, ... 1IHd)T = 14/diy + 1dip + .. + 1{d iy (4.18)

This is a unit vector perpendicular to the conditioning plane. Now apply Gram Schmidt

orthonormalization to obtain an orthonormal basis including e 4. For j decreasing from d-

1to1:
5
e =i - (e ei)e
iod ke kT Kk (4.19)

e =e/lel
] } )
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The first step above obtains a vector orthogonal to the basis vectors ey, k = j+1 ... d,
obtained thus far and the second step normalizes it to unit length. Since R is defined with
unit orthogonal basis vectors, R RT =Iso R-1 =RT.,

With this rotation (Equation 4.16), the last coordinate of Y, Y4, isin facta
rescaling of Z:

Yq=24d (4.20)

It is convenient to define a subsetof Y, U= (Y 1 Y2, Yd_l)T that is the first d-1
components of Y and reflects the true d-1 degrees of freedom in the conditional
simulation. We then denote Y = (UT, Z)T where Z' = Z//d. We actually resample
from f(UIZ") = (Y1, Y5, ... Y4.1!Z") and recover the disaggregate components of X by
backrotation. The kernel density estimate in rotated coordinates is obtained by

substituting X = RTY into (4.5) with bandwidth matrix H from Equation (4.6):

T -1 T
Y eXP\ - : 4.21
"= 0m 2 deys) 222 (4.21)

One should recognize that R s 1RT = (RS RT)'1 = S;,l represents a rotation of the
covariance matrix S into Sy. Also det(Sy) = det(S). Therefore, this is equivalent to
applying (4.5) to the rotated data. Now with Z' = Z/{d givenin Y = T, )T =Y 1r
Y9, ... Y4-1 Z)T, the conditional density function we resample from is:

fuizy =Ty p Y Y, 1Z) = _1U.2) (4.22)

d-1 ffu, zn au
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where f(U, Z) = ¥(Y) is obtained from (4.21) recalling that U denotes (Y}, Y, ..,

Yd_l)T, the vector Y without the last component. The covariance matrix Sy is

partitioned as follows:
S Su SUZ
y | T (4.23)
SUZ SZ

S, is the d-1 x d-1 covariance matrix of U. S, is the 1 x 1 variance of Z' and S,za
vector of cross covariance between each component of U and Z'. Substituting (4.21) in

(4.22), we obtain:

U-b) s @U-b)

A 1 n
fuI1Z) = 1T Y w.exp
-2 BT = 2 .
@) deysy o EL 22 .24
where
2
exp| - 3
A4S,
S N G))
Zexpl -—— 4.24b
= 2A'S (4.245)

, 1T
§'= Su - Suz Sz Suz (4.24¢)
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‘1 ' '
bi--ui«t-Squz (Z-zi) (4.24d)

This is illustrated in Figure 4-1 for d = 2 and shows the conditional density function

?(UIZ’) as a weighted sum of n Gaussian density functions each with mean b; and
covariance A2 §'. The area (volume for d > 2) under each kemel slice is the weight w;
that controls the contribution of point i to the conditional density estimate. Equation
(4.24b) shows that this weight depends on the distance of z; from the conditioning value
Z'. Observations that lie closer to the conditioning value (i.e., where (Z' - z';) is small)
receive greater weight. The weights are normalized to add to unity.

Resampling from Equation (4.24) proceeds as follows:
Preprocessing:

(1) Compute the sample covariance matrix S from the data x;.

(2) Solve for A by numerically minimizing (4.10) (using 0.25 and 1.1 times the
solution of (4.9) to bracket the search) with H from (4.6).

(3) Compute R, S, and §' from Equations (4.16), (4.23) and (4.24c).

(4) Use singular value decomposition to obtain B such that B BT =s'"
At each time step:

(5) Given Z from the aggregate model at each time step first calculate the weight w;
associated with each observation, using Equation (4.24b).

(6) Pick a point i with probability w;.

(7) Generate a d-1 dimensional unit Gaussian vector V. Each componentin V is
independent N(0,1).

(8) Obtain the simulated U from U=b; +AB V. Y = (UT, Z)T.

(9) Rotate back to the original coordinate space. X =RT Y.
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Steps 5 through 9 are repeated for each aggregate time step. A complication can
arise because the Gaussian kernels used in the kernel density estimate have infinite
support. Thus they assign some (hopefully small) probability to regions of the domain
where streamflow is negative (i.e., invalid or out of bounds). This leakage of probability
across boundaries is a problem associated with kernel density estimates based on kernels
with infinite support. Kernel density estimates also suffer from problems of bias near the
boundaries. Here we address the leakage by checking the flows for validity
(positiveness) and if they are invalid, repeat steps 7 to 9 fora given time step. That is,
we regenerate a new vector V and try again. This amounts to, in the kemel density
estimate, removing (cutting) the portion of each kernel that is out of bounds and
renormalizing that kernel to have the appropriate mass over the within bounds domain,
the so-called cut-and-normalize approach applied to each kemel. We record how often
this is done as frequent boundary normalization is symptomatic of substantial boundary
leakage. Alternative approaches that use special boundary kernels [Hall and Wehrly,
1991; Wand et al., 1991; Djojosugito and Speckman, 1992; Jones, 1993] or work
with log transformed data could be used in cases where this method for handling the

boundaries is found to be unsatisfactory.

Model Evaluation

This section explores the use and effectiveness of the NPD approach. It is first
applied to data from a specified bimodal distribution. This tests the model’s ability to
maintain distributional characteristics such as nonlinearity and bimodality. It is then
applied to simulate monthly streamflow in the Snake River.

To provide a point of reference, we also generate results using SPIGOT [Grygier

and Stedinger, 1990]. SPIGOT is a parametric disaggregation model representative of
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current hydrologic practice. The first subsection below describes SPIGOT. The next
subsection then describes the tests against the specified distribution. This is followed by
the Snake River application.

SPIGOT
SPIGOT [Grygier and Stedinger, 1988; Grygier and Stedinger, 1990] is a

parametric synthetic streamflow generation package that includes an annual streamflow
generation module, an annual to monthly disaggregation module, and a spatial
disaggregation module. We used the first two modules in our applications. An
Autoregressive model of order 1 (AR1) or order 0 (ARO) is used to generate the annual
streamflow. The annual to monthly disaggregation model in SPIGOT is the condensed
model described by Grygier and Stedinger [1988, 1990] as:

i-1
X = o + BiY +YX  + 8i jglexj +eV
(4.25)

where Y is the normalized annual flow, X; the normalized flow in month i, w; aset of
weights depending on the marginal distribution used, chosen to maximize the likelihood
of the untransformed monthly flows adding up to the untransformed annual flow, and V
is a random innovation taken as a Gaussian random variate with mean 0 and variance 1.
o, Bi, ¥;» 9;, and g; are parameters estimated by regression for each month. For the first
month, 7; is constrained to be zero and for the first two months 8; is constrained to be
zero to ensure self-consistency in the sense described by Stedinger and Vogel [1984].

SPIGOT first transforms the historical annual and monthly (or seasonal) flows to
Gaussian using four choices for the marginal probability densities. These are:

(1) Gaussian
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(2) Two-parameter Lognormal

(3) Three-parameter Lognormal

(4) Three-parameter Gamma using the Wilson-Hilferty transformation [Loucks et
al., 1981].
The parameters for each distribution are estimated by matching moments and the best
fitting distribution chosen by measuring the correlation of observations to the fitted

distribution quantiles (Filliben correlation statistic, Grygier and Stedinger [1990]).

T ith Synthetic
Here we describe a Monte Carlo investigation to test the ability of the NPD

approach to approximate a specified underlying distribution. Our test distribution,

illustrated in Figure 4-2, is based on distribution J in Wand and Jones [1993]. It consists

of a mixture of three bivariate Gaussians having different weights oy, stated as:

3
f=20 N, Z)

i=1 (4.26)
where N(i;, Z;) denotes a Gaussian distribution with mean M, and a covariance matrix
Z,. Individual weights, means, and covariances are shown in Table 4-1. Simulation from
it is achieved by picking one of the three Gaussian distributions with probability oy, then
simulating a value from that distribution.

We simulated 101 bivariate samples each consisting of 80 data pairs from this
distribution. The first sample is designated as the “calibration” sample and is used to
calibrate the NPD and SPIGOT models. In the case of NPD, this involves estimating the
sample covariance and bandwidth parameter A (based on minimizing the LSCV score as

described in previous section). Calibration of SPIGOT involves selection of the best

marginal density transformation based on Filliben correlation statistic, and estimation of
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the coefficients in the condensed disaggregation model in Equation (4.25). The remaining

100 samples are used to form 100 aggregate test realizations by adding the components Z
=X + X). These 100 aggregate test realizations are input to both NPD and SPIGOT to
generate 100 disaggregate realizations from both models. These disaggregate series are
designated “test” samples and serve as a basis to test how closely the model reproduces
statistics of the specified true distribution and of the calibration sample.

SPIGOT was modified to accept the same aggregate flows as the NPD model.
Boundary corrections (discussed in the previous section for the NPD approach; and
specified as an option in the SPIGOT software) were not imposed on either model.

To evaluate the reproduction of marginal distributions by each model, we applied a
univariate kemel density estimate to both components (X1 and X») of each disaggregated
sample. Figures 4-3a and 4-3b illustrate marginal densities of the calibration and
disaggregated samples for variables X and X,. Disaggregated sample p.d.f.’s are
represented using boxplots, which consist of a box that extends over the interquartile
range of the quantity (in this case the p.d.f.) being plotted. The line in the center of this
box is the median and whiskers extend to the 5% and 95% quantiles of the compared
statistic. The marginal densities of both the calibration sample and the SPIGOT or NPD
disaggregations were estimated using a single common bandwidth rather than optimal
bandwidths from the minimization of (4.10) for each simulated or historical sample. This
was done to avoid differences due to different bandwidths for individual samples. The
bandwidth we used was estimated as the median amongst the set of optimal bandwidths
for the historical sample and the NPD and SPIGOT realizations. The univariate KDE
curve (see NPD and aggregate flow results in Figure 4-3) is also estimated using this
median bandwidth. The curve marked “calibrated” represents the marginal density that is
theoretically reproduced in simulations from either approach. This is estimated from the

joint density of the calibration sample, and is a univariate parametric p.d.f. (depending on
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the transformation used) in case of SPIGOT results, and a numerically evaluated integral
of the joint density of X; and X, (with respect to X for marginal density of X1, and X 1
for marginal density of X3) in case of NPD results. One must note that while
disaggregation model marginal densities will always be similar to the calibrated
marginals, they are supposed to resemble the true or univariate KDE curves instead. In
the case of NPD results in Figures 4-3a and 4-3b, the true, calibrated, and univariate
KDE curves all show the same structure as the disaggregations. This is in contrast to
SPIGOT disaggregations in Figure 4-3a, where imposition of a three-parameter
Lognormal distribution on variable X results in realizations that bear little resemblance to
the sample density estimate or underlying true p.d.f. Figure 4-3b, however, shows good
performance by SPIGOT, because the underlying distribution of variable X5 can be well
represented by the Gamma marginal density transformation.

Figure 4-4 illustrates some common statistics for realizations from both approaches.
Both models reproduce these statistics well. The poor performance of SPIGOT on the
marginal density of variable X (Figure 4-3a) does not show up in this comparison of
sample statistics.

The above test shows that the nonparametric approach is able to model the joint
distribution of X1 and X estimated based on a single sample. We also tested the ability
of the nonparametric approach to reproduce the underlying distribution in Figure 4-2. We
rotated the samples in the above test such that each of the 101 samples was used once for
calibration with the remaining 100 being used for disaggregation. The joint density of
each calibration sample and its associated disaggregations were computed and stored
using the kernel estimate of (4.5) with bandwidth estimated using (4.10). The average
joint density of 101 calibration samples is illustrated in Figure 4-5. The average joint
density of 10100 (101x100) NPD disaggregations is shown in Figure 4-6. The mean of
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the 101 ISE (see Equation 4.7) estimates for bivariate densities of calibration samples is
0.0207. The mean of the 10100 NPD disaggregation ISE’s is 0.0339. In comparing
these figures to Figure 4-2, it is apparent that there is some smoothing in the kernel
estimates of both calibration and disaggregation samples. Smoothing in the calibration
p-d.f.’s (Figure 4-5) is proportional to the second derivative of the true density [Scott,
1992] and could be reduced by use of a “local” bandwidth (one that varies with location)
instead of the global bandwidth in (4.5). The average p.d.f. formed by the NPD
disaggregations (Figure 4-6) is more smoothed than the calibration p.d.f. of Figure 4-5.
This extra smoothing is because of addition of noise (the unit Gaussian vector, V, in step
7 of the simulation algorithm in previous section) to the resampled data points (vector b;
in step 8 of same algorithm). Another outcome of this extra smoothing is a slight inflation
in the variance and deflation in the skewness of NPD realizations. Expressions for these
and other statistics (mean, variance, correlation, and skewness) are derived for the
nonparametric order one streamflow simulation model (denoted NP1) in Appendix B and
can be extended (with modest modifications) to our nonparametric disaggregation

approach.

Tests with Monthly Flow Data

Here we describe the application of the nonparametric disaggregation (NPD) model
to 83 years (1911 to 1993) of monthly streamflow in the Snake River at Weiser, Idaho,
located at 44° 14' 44" N and 116° 58' 48" W at an elevation of 2086 ft above Mean Sea
Level, as recorded by the U. S. Geological Survey (USGS Station Number 13269000).
This data set was one amongst many streamflow data sets on which we tested our model,
all with satisfactory results. This site was chosen because in other work (Chapter 3) we

identified it as a river that had a marked nonlinear relationship between July and August
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month flows, as is illustrated in the joint density for the July-August month pair in Figure
4-7, estimated using the kernel estimator in (4.5). Such nonlinearity cannot be easily
represented with commonly used parametric density functions; therefore, these
streamflow data were a promising candidate for the use of nonparametric methods.

We compare results from application of the NPD model with those from SPIGOT.
Aggregate flows for the NPD application were simulated using the NP1 model (Chapter

3). The NP1 model is a nonparametric model constructed to preserve first-order Markov

A
dependence in a time series. It consists of a bivariate nonparametric density estimate f(Z,,

Z;_1) formed by applying Equation (4.5) to each sequential data pair. Flow values are

then obtained by sequentially resampling from the conditional density estimate ?(Ztth_l).
Aggregate flows for the SPIGOT application were simulated using an autoregressive lag
1 (AR1) model. A marginal density transform based on the best Filliben correlation
statistic [Grygier and Stedinger, 1990] was used to transform historical annual flows to
Gaussian. One hundred realizations, each of length 83 years, were generated from both
approaches. The length of 83 years was chosen to be the same as the length of available
historic data so that the variability of sample statistics across these realizations is
representative of the sampling variability of the historic data. Negative realizations from
NPD (amounting to about 0.1% of the total number of realizations) were resimulated
using the boundary correction procedure described in the previous section. Both models
were tested for their ability to reproduce the following statistics of the historic data.

(1) Mean

(2) Standard deviation

(3) Coefficient of skewness

(4) Cross correlation between seasonal streamflows and between seasonal and

annual streamflow
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(5) Kernel estimates of marginal distributions

(6) “State-dependent correlations’; correlations between different month pairs as a
function flow magnitude.

Figure 4-8 shows the monthly and annual aggregate mean streamflow from both
SPIGOT and NPD models, comparing historical and simulated flows using boxplots.
The fact that the historical means fall within the range of the boxes indicates that both
models reproduce mean flows.

Figures 4-9 and 4-10 use boxplots to compare standard deviation and skewness of
simulated and historical streamflows, respectively. Again both models reproduce these
statistics well, though some extra smoothing is visible in the nonparametric simulations.
This leads to inflation in the standard deviations and deflation in the skewness of
disaggregate flows from the nonparametric model. On the other hand, SPIGOT tends to
inflate the skewness in the months where the marginal density transform is inadequate
(for example, the Lognormal transformation performed on the May flows theoretically
leads to a coefficient of skewness of 1.6 as compared to the actual skewness of 0.54).

Figure 4-11 compares the cross correlations of the monthly and aggregate flows
from both models. The nonparametric model reproduces this statistic without bias while
SPIGOT is unable to model the dependence between certain month pairs (for example,
the simulated correlation between flows of month pairs 4-10 and 4-11 is lower than the
observed). This could be due to either some bias because of the marginal density
transform or the use of a condensed model (4.25) instead of a comprehensive model such
as in (4.2).

In Figure 4-12 the probability density estimates of the observed and simulated
flows are compared. As in Figure 4-3, we used a common bandwidth (chosen as the

median of a set estimated by minimizing LSCV for historical and simulated samples) to
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compute these univariate density estimates. The aggregate annual flows from AR1 and
NP1 models that drive the SPIGOT and NPD models as well as monthly flows from
April, June, and July are compared. The dotted line in case of SPIGOT flows represents
the modeled p.d.f. as suggested by the Filliben correlation statistic. Annual flows are
modeled well by both approaches. April flows are well modeled by both approaches,
though a cluster of observations around 40,000 cfs manifests itself better in NPD
realizations. June flows have a peculiar plateau-shaped p.d.f., which is not well
represented by the SPIGOT simulations. This is because none of the four marginal
density transformations available as options in SPIGOT can represent this particular
density shape. July flows have a bimodal p.d.f. that SPIGOT is unable to represent.
Although the NPD model does reproduce the bimodality, it attenuates the main mode
peak, again due to the extra smoothing imparted by the nonparametric model (see
discussion in the synthetic example in previous subsection).

It is also worth emphasizing that the NPD monthly flows here, by construction, add
up to the simulated aggregate flow used as input. There is therefore no need for
adjustments to fix this such as is necessary in SPIGOT [Grygier and Stedinger, 1988].

Recall that July-August flows (Figure 4-7) suggested dependence of correlation on
the flow magnitude (see difference in slopes of conditional mean for flows less than or
greater than 12,000 cfs in Figure 4-7) that is not easily modeled by parametric models
such as SPIGOT. In earlier work [Tarboton et al., 1993], we used a statistic that
quantified the dependence of correlation on the magnitude of flow. This statistic (denoted
the state-dependent correlation statistic [Tarboton et al., 1993]) measures the correlation
between flows above or below the median in month i with succeeding flows in month j.
For example, the “Correlation above and forward” for the July-August month pair would

be the correlation between July flows that are above the median July flow and their
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succeeding August flows. Differences between above median and below median
correlations are indicative of nonlinear state-dependence in the correlation structure.

Figure 4-13 shows the “Above and Forward” and “Below and Forward” state-
dependent correlations for flows in adjacent months from both models. The last month
pair (September-October) is not well represented because over-year dependence is not
modeled by either approach. What is notable though, is that while SPIGOT flows are
unable to reproduce the July and August state-dependent correlations, the nonparametric
approach approximates the “above and forward” correlations well, though showing a bias
in the “below and forward” correlations for the July-August month pair. This bias is due
to smoothing on the calibration p.d.f. in the NPD realizations (recall the differences
between Figures 4-5 and 4-6 in the synthetic flow example in previous subsection). On
the whole, the nonparametric approach shows less bias than SPIGOT.

The statistics compared thus far do not give the full picture relevant for hydrology.
Stochastic streamflow sequences are frequently used to evaluate storage and water
resources issues. Therefore, it is necessary to ensure that simulated sequences are
representative of the historic data with respect to these. Table 4-2 presents the bias and
Root Mean Square Error (RMSE) of the reservoir storaée capacity corresponding a fixed
yield of 80% of the mean annual streamflow. These storages were estimated based on the
sequent peak algorithm [Loucks et al., 1981] using equal monthly demands (1/12 of the
fixed yield fraction), and the bias and RMSE evaluated as fractions of the storage

estimated from the historical record:

n
: 1
Bias/ Sy, = (8, -7 XS, )/, (4.27)
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n
L3 2
26 -S)
RMSE /S, = 5 25, (4.28)

Sy

where Sy, denotes the historical storage, Ssi is the storage from the i’th realization, and n,
is the total number of realizations. The nonparametric model has a smaller bias and
RMSE than SPIGOT. Some other measures of hydrologic relevance were also compared
but space limitations prevent presentation of these results. Long-range dependence
quantified in terms of the Hurst Coefficient [Hurst, 1951] was preserved by both

models. The minimum average streamflow associated with different averaging durations
was computed to test the ability of each model to reproduce short- and long-term

droughts. Both models again performed well.

Discussions and Conclusions

Disaggregation models are useful for generating cross correlated sequences of
multisite annual and seasonal flows. We have shown how they can be formulated and
used in a nonparametric density estimation framework. This avoids the difficulty and
arbitrariness associated with distribution fitting and normalization transformations in
parametric approaches. It also directly preserved summability, avoiding the necessity for
adjustments to ensure this.

We used two test cases to illustrate that the nonparametric method performs as well
as parametric disaggregation approaches. The first test case demonstrated the ability of
the NPD approach to model statistical attributes for samples from a bimodal distribution.
We also showed that the NPD approach represents the marginal and joint density

functions (which for this case were known beforehand) effectively, something that
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parametric approaches are not able to do in general. The second test application (on
observed monthly flows in the Snake River) presented insights into actual performance of
the NPD model on a water resources system. It was encouraging to note that the NPD
approach was able to portray both conventional and hydrologically relevant statistics as
well as conventional methods, while providing a better representation of the sample joint
distribution in its realizations.

While this was a small application, chosen to illustrate and present this method,
applications to larger situations should be straightforward extensions of the theory
described here. One should, however, take note of problems that can arise if too few data
points are used to estimate the joint probability density in a high dimensional space. It is
advisable to use staging procedures [Loucks et al., 1981] that can help reduce the
dimensionality of the problem, and hence provide greater workability with the limited size
samples that are typical in hydrologic applications. Future work will focus on such issues
and also on devising disaggregation alternatives using the nearest-neighbor resampling
philosophy espoused in Lall and Sharma [1996).

Least squares cross validation was used to estimate the bandwidths necessary for
kernel density estimation in this study. However, the disaggregation method does not
depend on this and is applicable with any kernel density estimation procedure and any
bandwidth. Procedures for bandwidth and kernel selection are an area of active research
in the nonparametric statistics community, and as better methods become available they
can be easily incorporated into our model.

We are convinced that nonparametric techniques have an important role to play in
improving the synthesis of hydrologic time series for water resources planning and
management. They can capture the dependence structure present in the historic data,

without imposing arbitrary linearity or distributional assumptions. They have the
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capability to reproduce nonlinearity, state dependence, and multimodality while remaining
faithful to the historic data and producing synthesized sequences statistically

indistinguishable from the historic sequence.
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Table 4-1. Parameters of the Test Distribution

Gaussian density o4 Hi %
0.36 0.252
1 04 (329 0252 036
0.36 0252
2 04 (7,25 \p2s52 036
0.36 -0.252
3 02 @525 025 036
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Table 4-2. Reservoir Capacities from 100 Realizations for a Yield of 0.8 Mean Annual
Flow

Model Bias/S}, RMSE/Sy,

SPIGOT 0.2366 0.4319
NP 0.0316 0.3983
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Figure 4-1. Ilustration of a conditional density estimate f(XI, X5lZ) with Z =X +
X5 as a slice through the joint density function. Since the joint density estimate is formed
by adding bivariate kemels, the conditional density is estimated as a sum of kemnel slices.
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X1

Figure 4-2. Bivariate distribution used in the synthetic example to test the

disaggregation approach. This is a mixture of the three bivariate Gaussian density
functions described in Table 4-1.
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Figure 4-3. Marginal distributions for the calibration and disaggregation samples from
SPIGOT and NPD as represented by boxplots for components (a) X and (b) X;. The
true marginal density is obtained by integrating the p.d.f. in Figure 4-2. The calibration
p.d.f. is estimated by integrating the sample joint density of variables X; and Xo(a
parametric distribution in case of SPIGOT, and a kernel density estimate in case of

NPD). The boxes show the ranges of the univariate kerne] density estimates applied to
the 100 disaggregation samples with a common bandwidth chosen as the median amongst
set of optimal LSCV bandwidths for each sample. The dots above the x-axis represent the

calibration sample data points.
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X1

Figure 4-5. The average bivariate kemel density estimate of 101 calibration samples
from the synthetic test distribution in Figure 4-2. The average ISE of these calibration
joint density estimates is 0.0207.
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X1

Figure 4-6. The average bivariate kemnel density estimate of 10100 disaggregations
from 101 calibration samples. The average ISE of these joint density estimates is 0.0339.
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Figure 4-7. A bivariate kemnel density estimate of July-August flows from the Snake
River. The thick line denotes the conditional mean of August flows conditional to July
flows. Lowess, a locally weighted regression smoother [Cleveland and Devlin, 1988],
was used in our computations. Default parameter choices (number of iterations = 3,
fraction of data used for smoothing at each point = 2/3) were used in the “lowess” code in
the statistical package S-plus.
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Figure 4-8. Simulated and observed seasonal and annual mean streamflow using
SPIGOT and NPD. The line represents the monthly means of the historical record. The
dot in the right panel is the observed annual mean.
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Figure 4-9. Simulated and observed streamflow standard deviations using SPIGOT
and NPD. The line denotes the observed monthly standard deviations. The dot above
“Ann” represents the standard deviation for the observed annual flows.
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Figure 4-10. Simulated and observed streamflow skewness coefficients using
SPIGOT and NPD. The line denotes the observed monthly skews. The dot above “Ann”
represents the skew in the observed annual flows.
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Figure 4-12. Simulated and observed marginal density estimates using the univariate
kemel density estimator. The dotted line in the SPIGOT marginal densities represents the
underlying density based on the Filliben correlation statistic. (a) Annual AR1 and NP1
marginal density estimates. A three-parameter Lognormal distribution is used in the AR1
model fit. (b) April SPIGOT and NPD marginal density estimates. A three-parameter
Lognormal distribution is used in the SPIGOT fit for this month. (c) June SPIGOT and
NPD marginal density estimates. A three-parameter Lognormal distribution is used in the
SPIGOT fit for this month. (d) July SPIGOT and NPD marginal density estimates. A
three-parameter Lognormal distribution is used in the SPIGOT fit for this month.
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CHAPTER 5
SMALL SAMPLE PERFORMANCE OF FOUR BANDWIDTH
ESTIMATORS FOR BIVARIATE KERNEL

DENSITY ESTIMATION!

Abstract

Issues related to selection of optimal smoothing parameters for kernel density
estimation with small samples (200 or fewer data points) are examined. Both reference to
a Gaussian density and data-based specifications are applied to estimate bandwidths for
samples from bivariate normal mixture densities. The three data-based methods studied
are Maximum Likelihood Cross Validation (MLCYV), Least Square Cross Validation
(LSCV), and Biased Cross Validation (BCV2). Modifications for estimating optimal local
bandwidths using MLCV and LSCV are also examined. The use of local bandwidths
does not necessarily improve the density estimate with small samples. Of the global
bandwidth estimators compared, MLCV and LSCV show lower variability and higher
accuracy, while BCV?2 suffers from multiple optimal bandwidths for samples from

strongly bimodal densities.

Introduction

An important issue concerning kernel density estimation is the selection of optimal
smoothing parameters. Bandwidth estimation for kernel density estimation and regression
has been widely studied in the last decade. While several asymptotically optimal methods
exist for bandwidth estimation, limited investigations of their small sample performance

are available.

ICoauthored by Ashish Sharma, Upmanu Lall, and David G. Tarboton.
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The aim of this chapter is primarily to share some of our experience with bandwidth
selection procedures for small samples (samples less than 200 data points) in a bivariate
setting. An overview of three bandwidth selection procedures is presented from a
practitioner’s perspective. Their performance is evaluated with samples drawn from
bivariate normal mixture densities. The efficiency of local bandwidth-based estimators
with estimators using a single or global smoothing parameter is also compared. The
Mean Integrated Square Error (MISE) between the estimated and parent densities is used
as a criterion to evaluate the performance of the bandwidth estimation method.

Kermel density estimation in a multivariate setting including a method for estimation
of local bandwidths is described first. The next section describes the bandwidth
estimation procedures compared in this chapter. Next, a description of the numerical
experiments used to evaluate the performance of the alternative bandwidth selection
procedures, is given. Results for the global bandwidth based estimators are followed by

results from those that use local bandwidths.

Kernel Density Estimation

The Gaussian kemnel density estimate of a d-dimensional probability density

function f(x) is written as:

?( ) 1 i 1 ( (x-xi)TH.1 (x-xi))
X)=q exp\ - (5.1)
Y= m ™ dean'? 2

where n is the number of observed vectors x; and H is a bandwidth matrix that must be
from the class of symmetric, positive-definite d x d matrices [Wand and Jones, 1994].

The above density estimate is formed by summing Gaussian kernels with a covariance
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matrix H, centered at each observation Xj. The bandwidth matrix H here is analogous to
the covariance matrix for a multivariate Gaussian density. It can be specified in several
ways. Wand and Jones [1993] suggest three ways to parameterize H for the bivariate

case (d = 2). These are:

2
H=h I.h>0 (5.22)
. 2 2
H =diag (h1 s h2 ): hl’ h2>0
(5.2b)
h12 12
H= 5 :hl,h2>0, lh12I<h1h2
h12 h2
(5.2¢)

where I represents the identity matrix and h, hy, etc. are elements of the bandwidth
matrix H. The first case (Equation 5.2a) represents a spherical kernel (with circular
contours). The addition of extra smoothing parameters in the second case (Equation 5.2b)
makes the kernel elliptical, though aligned parallel to the coordinate axes. The last case
(Equation 5.2c) represents an elliptical kernel aligned in a direction dictated by the cross
diagonal term (h12). The number of parameters required in (5.2c) can be reduced by
considering the following parameterization, first proposed by Fukunaga [1972].

H=A2S§ (5.3)

Here, S is the sample covariance matrix of the data and A2 prescribes the bandwidth

relative to this estimate of scale. Use of this parameterization amounts to transforming the



165

data so that the sample covariance matrix is the identity. This procedure is called
“sphering” [Fukunaga, 1972] and ensures that all kernels are oriented along the principal
components of the covariance matrix. Such a parameterization has significant advantages
when the variables are strongly correlated. Wand and Jones [1993] demonstrate the
utility of this method for bivariate Gaussian data but note that densities having multiple
modes in one of the coordinate directions may be poorly estimated. We have used the
estimator in (5.1) with the bandwidth matrix described in (5.3) in all our results in
sections 3 and 4. This estimator was chosen primarily because it requires the optimization
of only one parameter (A) while still providing an elliptical kemel oriented as dictated by
the sample correlation. For ease of reference, his factor (A) is called the bandwidth in the
rest of the chapter.

Optimization of the bandwidth is subject to an appropriate criterion. While criteria
such as the Integrated Square Error (ISE) and the Mean Integrated Square Error (MISE)
give a estimate of the overall or global goodness of fit, the Mean Square Error (MSE)
gives a pointwise measure of the error in the kernel density estimate. Minimization of the
MSE can be used to estimate optimal pointwise or local bandwidths. Assigning individual
bandwidths to each data point (a bandwidth A; corresponding to data point X;) is an
effective specification for local bandwidths. Density estimation based on this specification
can proceed using H; = l.iz S instead of H in Equation (5.1). Such additional flexibility
in the bandwidth may be used to restrict the smoothing imposed by the kernel function in
regions of high density or high curvature, where there are a lot of data points, or where
the smoothing introduces bias. Conversely, in regions of low density the bandwidth can

be increased to average over more points.

Abramson [1982] proposed a method for estimating local bandwidths by

considering the Taylor series expansion of the squared bias of /f\(x). The second-order
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term in the Taylor series can be eliminated if the local bandwidth is inversely proportional
to the square root of true density. The implementation of Abramson’s method by
Silverman [1986] involves perturbing an appropriate global or fixed bandwidth kp
(denoted as the pilot global bandwidth to distinguish from A) into a sequence of local
bandwidths A; at each observation x;. This implementation (which we shall call the

Abramson-Silverman method) can be stated as:

A -12
h=h £,/ ) (5.4)

where ?p(.) is a pilot density estimate and g is the geometric mean of ?p(xi) at data points
x;. The pilot density specifies the amount of perturbation the local bandwidths receive
and may be estimated using any acceptable scheme. In results presented later, a kemel
density estimate using the global bandwidth kp as the pilot density in (5.4) was used.
Note that the inverse relationship of a local bandwidth with the estimated density in effect
provides a higher bandwidth in regions of low density and a lower bandwidth where the
density is high. Several authors have noted that local bandwidths need to be “clipped” or
restricted to lie within certain upper and lower bounds. We chose not to clip the A; due to
the subjectivity introduced by a prescriptive choice for these upper and lower bounds.
Use of local bandwidths for estimating the density, though computationally intensive, can

result in certain gains as demonstrated in Scott [1992].

Bandwidth Estimation Methods
This section describes some methods for estimation of the optimal bandwidth.
These are:

(1) Reference to a standard distribution
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(2) Maximum Likelihood Cross Validation (MLCV)

(3) Unbiased or Least Square Cross Validation (LSCV)

(4) Biased Cross Validation (BCV2).

Each of these methods and their associated advantages / disadvantages are
discussed, followed by modifications needed to estimate optimal local bandwidths using

the Abramson-Silverman method in Equation (5.4).

Gaussian Reference Bandwidth (GREF)

The simplest automated choice for the bandwidth A is the reference bandwidth. A
reference bandwidth is optimal for an assumed (reference) distribution using an
appropriate criterion. A Taylor series expansion of the MISE is used to develop
expressions for the optimal reference bandwidth. Scozt [1992] gives an expression for
the first-order Taylor series approximation of the univariate MISE. This expression,
using a Gaussian kernel, can be stated as:

1 h4

3= ah +q R(f")

AMISE() = (5.5)

where AMISE stands for the Asymptotic Mean Integrated Square Error, R(g(x)) = J g(x)2
dx (in this case g(x) = f"(x)) and f"(x) is the second derivative of the true density.
Minimization of the multivariate version of (5.5) with the true density assumed to be
Gaussian results in the following expression for the AMISE optimal Gaussian reference

bandwidth [Scozt, 1992]:

1/(d+4)
2 ~1/(d+4)

GREF = d?) n (5.6)
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Here d and n denote the dimension and sample size, respectively. Although simple, this
choice suffers from the obvious disadvantage of being optimal only for a Gaussian
density. The following methods avoid assuming an underlying density and instead

choose bandwidth by optimizing data-based estimates of likelihood or square error.

Maximum Likelihood Cross Validation (MLCV]

This method is a natural development of the idea of using likelihood to judge the
goodness of fit of any statistical model. The use of MLCV to choose the bandwidth for
kernel density estimation was proposed by Habbema et al. [1974] and Duin [1976].

The rationale behind this method is to estimate the log-likelihood of the density at
observation x; based on all observations except X;. Averaging this log-likelihood over all

observations results in the following MLCV score:

n A
MLCV() = S log x)
= 5.7)

where ?_i(xi) denotes the density estimated from all the data points except x;. Using the

estimator in (5.1), the MLCYV score can be stated as:

n

Y exp(-L./2)
1 n j#i i}
MLCV(H) =4 3 log| —== 77)
i=1 2n) " (n-1) det(H) (5.8)

where

Li; = - x) THL (x; - xj) (5.9)
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and H is the bandwidth matrix specified in (5.3). Maximizing the score in (5.8) results in
an MLCV optimal bandwidth Ay -

For long-tailed densities, the MLCYV criterion can lead to degenerate bandwidth
choices and inconsistent density estimates where a global bandwidth is used [Silverman,
1986]. Schuster [1985] recommended optimizing the MLCV function over x € X where
X is an appropriate subset of the sample space that excludes the tails.
Unbiased or Least Square
Cross Validation (LSCV)

This method was first proposed by Bowman [1984] and Rudemo [1982]. LSCV
is based on the direct minimization of the ISE. The ISE for a multivariate density f can be

expanded as:

ISE = [(f(x) - fx))’dx = RE®)) - 2 [ 1(x) fx) dx + R(E)) (5.10)

The first term in (5.10) depends solely on the data, bandwidth, and kernel used. The last
term, R(f(x)), is independent of the bandwidth and does not need to be considered. The
middle term involving the product of the true and estimated densities may be recognized
as E[?(X)] and estimated using leave-one-out cross validation. The LSCV criterion can

then be stated as:

A LN
LSCVAD =RE) - 2 3 )
=l (5.11)
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Sain et al. [1994] provide an expression for LSCV in any dimension with
multivariate Gaussian product kernels (Gaussian kernels with a diagonal H matrix). The

LSCYV score for a generalized H matrix (one with cross diagonal terms) can be stated as:

1
0 _ | exeeLy ) 4 exp(L,/2)

1
+=Y ¥ -
o v n n-1

LSCV(H) =
@' de'” (5.12)

where Lij follows the definition in (5.9). Minimizing the LSCV score in (5.12) results in
an LSCV optimal bandwidth A; o,.

Though unbiased, bandwidth estimated using the LSCV score function has been
reported to suffer from the disadvantages of a tendency to undersmooth [Chiu, 1990,
1991] and a high variance as compared to the BCV estimator of Scott and Terrell [1987].
The higher variance corresponds to a tendency for the LSCV score function to have
multiple local minima and hence a tendency to undersmooth [Chiu, 1990]. Solutions to
this problem are suggested among others by Chiu [1990, 1991]. These solutions,
however, were not implemented in our analysis. Compared to the BCV2 score function
that is described next, Sain et al. [1994] report that LSCV has a marginally smaller

variance when applied to estimate a univariate Gaussian density.

Biased Cross Validation (BCV2.

Proposed by Sain et al. [1994], biased cross validation provides a data-based
estimate of the AMISE in (5.5). We shall refer to this as BCV2, the notation used by
Sain et al. in their paper. The term R(f") in Equation (5.5) is estimated using leave-one-

out cross validation. For a vector x, this term can be stated as:
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R(f") = f'x)2 dx = ] fiV(x) f(x) dx = E[fiV(x)] (5.13)

or,

1 v
RE) =72 Fx)
i=1 (5.14)

where ?:;’(xi) is the fourth derivative of the kernel density estimate at x; formed by
leaving out data point X;. Sain et al. [1994] provide an expression for BCV2 using
Gaussian product kernels. Extending their result to the case of a general bandwidth

matrix H, we obtain:

n
3 2[ L. -Qd+)L +d>+2d
=1 AL i

2®° n deta 4n(o-1) det@) 2 (/2m)°

BCV2(H) = exp(-LiJIZ)

(5.15)

with Lij as defined in (5.9). A global bandwidth Agcv; can be optimized by minimizing
the score in (5.15).

BCV?2 suffers from the problem of being a biased estimator of the optimal
bandwidth. An earlier version of biased cross validation (denoted BCV by Scott and
Terrell [1987] and BCV1 by Sain et al. [1994]) had the advantage of having smaller
variance though being more heavily biased than BCV2. Apart from the reduction in bias,

another justification for BCV2 over BCV is the relative ease with which it can be
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implemented in multivariate settings. Sain et al. [1994] conducted a simulation study to
compare the performance of BCV2 with LSCV. They found that LSCV tends to have
higher variance than BCV2 for a standard Gaussian density, although their derivations
for the asymptotic standard deviations [Sain et al., 1994] indicate otherwise. Sain et al.
support their results by noting that LSCV tends to undersmooth, which may increase the

variance unnecessarily.

Estimation of Optimal Local Bandwidd

Results in the next section use the Gaussian reference, MLCV, and LSCV, as
criteria for estimation of local bandwidths. The Abramson-Silverman method (Equation
5.4) is used. Details of our implementation of the MLCV and LSCV score functions for
local bandwidths are given here.

As mentioned in the previous section, local bandwidths may be estimated based on
a pilot density estimate (see Equation 5.4). We have used a kernel density estimate based
on a global bandwidth A’p as the pilot density. Local bandwidths can then be estimated by
perturbing A.p as given in Equation (5.4). These steps amount to the following algorithm:

(1) Estimate the pilot density using the pilot bandwidth lp Call this pilot density

(-

(2) Estimate the corresponding local bandwidths A; using the Abramson-Silverman
method in Equation (5.4).

(3) Calculate the criterion function (MLCV or LSCV) for local bandwidths A

The only specification used here is that of the global bandwidth A.p Silverman’s
suggestion can be taken to optimize the global bandwidth J\.p and then simply perturb it to
a vector of local bandwidths. In this study, the target score or optimization function was

computed using the density estimates based on the local bandwidths A, obtained upon
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perturbing the global hp The optimal A.p is then selected as the optimizer of the score
function computed using the local bandwidths. This procedure was followed in all cases
except when the Gaussian reference bandwidth is used, where that bandwidth was used
directly to determine corresponding local bandwidths. The global Gaussian reference
bandwidth (GREF) is denoted as A'PGREF'

The MLCYV criterion using local bandwidths is a natural extension of Equation

(5.8):

1 n n exp(- U1l2)
MLCV=y Ylog| ¥ —— T
i=1 ¥ @2r) (0-1) det(Hj)

(5.16)
where:

T, __-1
U L= (xi-xj) Hj (xi-xj) 5.17)

Hj equals Ajz S in this specification. Optimization proceeds by maximizing the score in
(5.16) with respect to the pilot bandwidth kp The MLCYV optimal pilot bandwidth is

denoted Kp .
MLCV
An equivalent of the LSCV in (5.12) for local bandwidths is:

I n 1 an exp (- U2/2) 2exp (- Ul/2)
d w2 X 1”7 - 12
/m) n =1 | det(H,) P ndet MAH)" (1) detCH)

LSCV =

(5.18)
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where U follows the definition in (5.17) and Uj equals:

T -1
U2 = (xi-xj) (Hi+Hj) (xi-xj) (5.19)

As before, H; equals J\.iz S for this specification. Note that Equation (5.18) reduces to
Equation (5.12) when H; = Hj = H. Optimization proceeds by minimizing Equation
(5.18) with respect to the pilot bandwidth Ap The LSCV optimal pilot bandwidth is
referred to as A'P[scv'

Four global bandwidth selectors GREF, MLCV, LSCV, and BCV?2, were
discussed in this section. Extensions for local bandwidths were developed for MLCV and
LSCYV. Results using these procedures applied to samples from selected Gaussian

mixture densities are provided in the next section.

Application to Samples from
Gaussian Mixture Densities

Here we evaluate the performance of bandwidth estimation methods described in
the previous section. These methods were tested with samples drawn from mlxtures of
bivariate Gaussian densities. Small samples (less than 200 data points for each bivariate
sample) were considered. We chose the class of Gaussian mixture densities since exact
results for the MISE and AMISE given a bandwidth matrix (or matrices if local
bandwidths are used) are known [Wand and Jones, 1995]. We used the Numerical
Recipes function BRENT [Press et al., 1989] to optimize the bandwidth (A or l.p) in the
range Aggep/10 to 2A5p pe. This optimization function is based on inverse parabolic
interpolation that ensures convergence given an initial range in which the minimum can be

found. Several spot checks indicated that the minimum found by this routine was indeed
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a global minimum. The performance of each estimator was measured by recording the
ISE between the true and estimated densities for each sample. The ISE was then averaged
over the samples to get a measure of the MISE. The fact that the integral of the product of
two Gaussians can be represented as a single Gaussian, as reported in Wand and Jones
[1993], reduced the ISE calculations considerably. It should be noted that since our
samples are drawn from Gaussian mixture densities, each term in the ISE in (5.10) can
be represented as a sum of Gaussian p.d.f.’s.

Results for three sample sizes (50, 100, and 200) from the four distributions listed
in Table 5-1 are evaluated. These distributions were chosen based on a list of bivariate
distributions in Wand and Jones [1993]. Contour plots of these p.d.f.’s are illustrated in
Figure 5-1. Our testing procedure involved drawing 50 samples of sizes 50, 100, and
200 from each test distribution. The ISE was used to evaluate the performance of various
methods and was estimated by integrating the square of the difference in the true and
estimated densities. Also presented is the bandwidth that minimizes the exact MISE for
each of the test densities. Estimates of this exact MISE are based on relations in Wand
and Jones [1993]. Results for global bandwidth estimators are followed by those using
local bandwidths as described in section 3.5.

Results Using a Global

ISE’s were computed as a function of the optimal global bandwidth for each
sample. Table 5-2 shows the average of these ISE scores for all test densities and sample
sizes. Histograms of the optimal bandwidths for each of the test densities are illustrated in
Figures 5-2 (density A), 5-3 (density B), 5-4 (density C), and 5-5 (density D). Also
shown are the MISE optimal bandwidth and the Gaussian reference bandwidth for each

density and sample size. The bias and standard deviation of the optimal bandwidths (from
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MLCV, LSCV and BCV2) are presented in Table 5-3.

As expected, the reference Gaussian bandwidth results in the minimum MISE (see
Table 5-2) for density A (the standard normal p.d.f) for all sample sizes, with MLCV
coming a close second. Higher MISE's for BCV2 and LSCV are partly due to the greater
variability in optimal bandwidths from both methods (see Figure 5-2 and Table 5-3). It is
notable that MLCV (a method that is not based on minimizing an L2 measure of error)
gives a lower variance and a smaller MISE than other cross validation-based methods. A
low bias in all methods is apparent from Table 5-3.

Density B is bimodal with the modes aligned along one coordinate axis. Note how
close the reference bandwidth lies to the MISE optimal bandwidth for samples of size 50
from this density. This reflects in the ISE scores too, with the Gaussian reference
bandwidth resulting in the best MISE amongst all methods. Poor performance for BCV2
is apparent and is due to the high variability in its optimal bandwidths (see Figure 5-3 and
Table 5-3). MLCV again gives the best results amongst all cross validation methods.

Density C is more distinctly bimodal than density B. Gaussian reference is a poor
choice for the bandwidth for this density (see Figure 5-4). Both MLCV and LSCV prove
comparable and perform better than other methods. Both present comparabie standard
deviations and ISE scores, though LSCV shows a lower bias than MLCV. BCV2 proves
disappointing for this density. The histogram showing BCV2 optimal bandwidths in
Figure 5-4 indicates the presence of two distinct modes for BCV2 optimal bandwidths.
Considering the fact that our bandwidth search procedure is not permitted to extend
beyond the limit of the plot, the standard deviation for this method would actually be
higher than what is reported in Table 5-3. It is notable, though, that the BCV?2 results for
sample size 200 show a distinct improvement (and a distinct mode in the histogram) over

other sample sizes.
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Figure 5-5 shows a large difference in the Gaussian reference and the MISE optimal
bandwidths for density D. Much like the earlier case, the Gaussian reference choice
compares poorly with the other methods. Multiple modes are again evident for BCV2 (for
n =50 and 100), hence the higher standard deviation (see Table 5-3). Variability in the
optimal bandwidth and the associated ISE is lowest for MLCV, followed closely by
LSCV.

On the whole, BCV2 does not appear to be a stable estimator of the optimal
bandwidth. Amongst other choices, while Gaussian reference is a fairly good guess for
Gaussian or near Gaussian data, MLCV and LSCV are the two most consistent

bandwidth estimators amongst the ones studied.

Results Using Local Bandwidil

Results from using the optimal local bandwidth estimators developed earlier based
on the Abramson-Silverman method (Equation 5.4) are given here. Table 5-4 shows the
mean ISE for all test densities and sample sizes using the Gaussian reference, MLCV,
and LSCYV criteria for selecting local bandwidths. Although there are n loca.l bandwidths
A;, they are all keyed to a single global pilot bandwidth A.p through Equation (5.4). We
present results for these pilot bandwidths in our comparisons. Histograms of optimal
pilot bandwidths for each of the four test densities are illustrated in Figures 5-6 (density
A), 5-7 (density B), 5-8 (density C), and 5-9 (density D). The Gaussian reference
bandwidth (Equation 5.8) is also shown. Standard deviations of the optimal pilot
bandwidths (using MLCV and LSCV) are presented in Table 5-5.

The ISE scores in Table 5-4 indicate no improvement over global bandwidth based

estimators. Density A shows that LSCV performs marginally better than MLLCV for
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sample size 100 and 200, though both are much worse than the global bandwidth results
presented in Table 5-2. This could be due in part to the higher variability of the optimal
pilot density (see Figure 5-6 and Table 5-5).

GREEF is picked over MLCV and LSCV for Density B, though no improvement
over global bandwidth estimators is visible. A higher variability in the pilot bandwidths
(see Figure 5-7) could again be the cause for this performance.

Results from density C are slightly reassuring. The Gaussian reference bandwidth
when used as the pilot bandwidth shows better performance than its global counterpart.
This is, however, countered by the fact that GREF is the worst choice (except BCV2) for
density C in Table 5-2 and is significantly higher than the optimal bandwidths picked by
MLCYV or LSCYV (see Figure 5-8). MLCV and LSCV pick the best local bandwidths
though there are no improvements over global MLCYV or LSCV choices.

Comparing to Table 5-2, improvements in the ISE with GREF are evident for
density D. It, however, heavily oversmooths (see Figure 5-9) as compared to the MLCV
or LSCV optimal bandwidths, which are again inferior to their global counterparts.

On the whole, using local bandwidths did not result in any improvements over

global bandwidth estimators. This was contrary to our expectations.

Conclusions and Recommendations

Four methods for bandwidth estimation were evaluated. Results using both global
and local bandwidths were compared. Although the list of test distributions over which
these methods were compared is limited, we feel that these results are representative of
plausible practical cases where limited data are available, and do provide guidance and
insight for the practitioner.

The conclusions can be summarized as follows:
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(1) Local bandwidth estimation methods did not improve MISE performance
relative to methods using a global smoothing parameter for the sample sizes and test
distributions used.

(2) Gaussian reference can be a good choice when the densities are weakly
Gaussian (as in density A and B in Table 5-1). Use of the Gaussian reference in other
cases can lead to significant oversmoothing of the density estimate.

(3) Biased Cross Validation (BCV2) does a poor job in estimating the optimal
bandwidth, more so for sample size 50 or 100 than for size 200. One disturbing aspect of
this method is the high variability of BCV2 optimal bandwidths. Two distinct peaks were
visible in the histograms for BCV2 optimal bandwidths for densities C and D. This small
sample performance of BCV2 is disappointing and contrary to the results in Sain et al.
[1994]. By choosing an estimate that is biased towards oversmoothing, one hopes that
the variance in bandwidth selection can be reduced. An increase in the variance of LSCV
has been demonstrated in the past due to occasional extreme undersmoothing. While
BCV2 appears to avoid such extreme undersmoothing, its choice of A for n < 200
appears to be more diffuse than that from other cross validation criteria. The high
variance and bias lead to a poor performance overall in the simulations presénted here.

(4) LSCV and MLCYV both perform well. However, given the computational
simplicity of MLCYV, we recommend MLCYV over LSCV for use on small samples.
Cautionary notes on the consistency of MLCYV with fixed bandwidths and long-tailed

densities do, however, apply.
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Table 5-1. Description of the Bivariate Normal Mixture Densities Studied

Density wiN(1, 1y, 61 12, 0’122, PP +-...
+wi NQy, 1y, 012, 0302, py)

(A) Standard  N(0, 0, 1, 1, 0)

(B) Bimodal  1/2 N(-1, 0, (2/3)2, (2/3)2, 0) + 1/2 N(1, 0, (2/3)2, (2/3)2, 0)

(C) Bimodal 172 N(1, -1, (/3)2, (2/3)2, 7/10) + 12 N(-1, 1, (/3)2, (2/3)2, 0)

(D) Bimodal 0.4 N(-1.2, 0, (3/5)2, (3/5)2, 7/10) + 0.4 N(1.2, 0, (3/5)2,
(3/5)2, 7/10) + 0.2 N(0, 0, (3/5)2, (3/5)2, -7/10)

In the notation used, N(.) refers to a bivariate Gaussian distribution with mean (p.jl,

:9), variance (C; 2, Gi72) and correlation p; where j ranges from 1 to k, k being the
K 17 012 j
number of mixtures used. wy, . ., Wy denote the weights for individual Gaussian

p.d.f.’s.



Table 5-2. Mean ISE for Global Bandwidth-Based Estimators

Density Method n=50 n=100 n=200
GREF 0.007s 0.0048 0.0031

A) MLCV 0.0077 0.0050 0.0032
LSCV 0.0089 0.0054 0.0038

BCV2 0.0083 0.0057 0.0036

GREF 0.0109 0.0077 0.0049

(B) MLCV 0.0119 0.0082 0.0050
LSCV 0.0134 0.0089 0.0053

BCV2 0.0145 0.0095 0.0054

GREF 0.0331 0.0263 0.0208

©) MLCV 0.0259 0.0175 0.0109
LSCV 0.0261 0.0173 0.0107

BCV2 0.0467 0.0293 0.0107

GREF 0.0274 0.0215 0.0158

D) MLCV 0.0253 0.0180 0.0116
LSCV 0.0286 0.0186 0.0119

BCV2 0.0369 0.0227 0.0122

182



Table 5-3. Sample Bias and Standard Deviation of Estimated Optimal Global
Bandwidths

183

Density Method EA-Aygsp) o)

EQ-Mgsp) 64) EQ-dygee) o)

(A)

(B)

©)

D)

MLCV
LSCV
BCV2

LSCv
BCV2

LSCV
BCV2

LSCV
BCV2

0.0493
0.0107
0.0510

0.0362
0.0435
0.0979

0.0664

0.0125
0.5116

0.0273
0.0186
0.2604

0.0681
0.1151
0.1163

0.0793
0.1205
0.2034

0.0586

0.0687
0.3318

0.0652
0.0959
0.3175

0.0192
0.0081
0.0023

0.0319
0.0271
0.0489

0.0472

-0.0012
0.2488

0.0224
0.0067
0.0619

0.0613
0.0771
0.1115

0.0596
0.0836
0.1370

0.0359

0.0411
0.3153

0.0407
0.0483
0.1866

0.0273
-0.0216
0.0057

0.0364
0.0326
0.0214

0.0315

0.0036
0.0113

0.0298
0.0016
0.0002

0.0404
0.0774
0.0909

0.0415
0.0619
0.0741

0.0277

0.0259
0.0329

0.0335
0.0362
0.0501




Table 5-4. Mean ISE for Local Bandwidth-Based Estimators

Density  Method n=50 n=100 n =200
GREF 0.0089 0.0054 0.0039

A) MLCV 0.0090 0.0067 0.0062
LSCv 0.0150 0.0058 0.0060

GREF 0.0129 0.0086 0.0051

(B) MLCV 0.0163 0.0117 0.0072
LSCV 0.0181 0.0115 0.0059

GREF 0.0303 0.0223 0.0158

©) MLCV 0.0268 0.0190 0.0123
LSCV 0.0327 0.0219 0.0117

GREF 0.0277 0.0203 0.0136

D) MLCV 0.0319 0.0231 0.0152
LSCV 0.0372 0.0233 0.0147
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Table 5-5. Sample Standard Deviations of Estimated Optimal Ap

Density Method n=50 n=100 n=200
A MLCV 0.1086 0.0926 0.0759
LSCV 0.1892 0.1324 0.1572

(B) MLCV 0.0843 0.0667 0.0471
LSCV 0.1648 0.1117 0.0785

© MLCV 0.0470 0.0295 0.0231
LSCV 0.0771 0.0606 0.0389

D) MLCV 0.0583 0.0327 0.0268
LSCV 0.1082 0.0635 0.0501
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Density A Density B

Figure 5-1. Contour plots of the bivariate test densities listed in Table 5-1.
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Figure 5-2. Histograms of optimal global bandwidths from MLCV, BCV2, and LSCV
for the test density A. The bandwidths are divided by the MISE optimal bandwidth and
plotted on a log scale. The continuous and dotted lines denote the MISE optimal
bandwidth and the Gaussian reference bandwidth in (5.6), respectively.
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Figure 5-3. Histograms of optimal global bandwidths from MLCV, BCV2, and LSCV
for the test density B. The bandwidths are divided by the MISE optimal bandwidth and
plotted on a log scale. The continuous and dotted lines denote the MISE optimal
bandwidth and the Gaussian reference bandwidth in (5.6), respectively.
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Figure 5-4. Histograms of optimal global bandwidths from MLCYV, BCV2, and LSCV
for the test density C. The bandwidths are divided by the MISE optimal bandwidth and
plotted on a log scale. The continuous and dotted lines denote the MISE optimal
bandwidth and the Gaussian reference bandwidth in (5.6), respectively.
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Figure 5-5. Histograms of optimal global bandwidths from MLCV, BCV2, and LSCV
for the test density D. The bandwidths are divided by the MISE optimal bandwidth and
plotted on a log scale. The continuous and dotted lines denote the MISE optimal
bandwidth and the Gaussian reference bandwidth in (5.6), respectively.
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Figure 5-6. Histograms of the optimal pilot bandwidths from MLCV and LSCV for the
test density A. The bandwidths are scaled by the Gaussian reference bandwidth (shown
dotted in figure) in (5.6) and plotted on a log scale. The scaling is done merely to provide
a common scale for the different sample sizes for which the results are portrayed.
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Figure 5-7. Histograms of the optimal pilot bandwidths from MLCV and LSCV for the
test der;sny B. The bandwidths are divided by the Gaussian reference bandwidth (shown
dotted in figure) in (5.6) and plotted on a log scale.
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Figure 5-8. Histograms of the optimal pilot bandwidths from MLCV and LSCV for the
test density C. The bandwidths are divided by the Gaussian reference bandwidth (shown
dotted in figure) in (5.6) and plotted on a log scale.
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Figure 5-9. Histograms of the optimal pilot bandwidths from MLCV and LSCV for the
test density D. The bandwidths are divided by the Gaussian reference bandwidth (shown
dotted in figure) in (5.6) and plotted on a log scale.
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CHAPTER 6
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Representation of dependence structure has been an important problem in stochastic
hydrology. Prior work with a few exceptions [Adamowski, 1989; Adamowski and
Feluch, 1990; Karisson and Yakowitz, 1987; Yakowitz, 1987] has addressed this
from a parametric viewpoint. A parametric approach usually involves choosing and fitting
probability distributions that are completely described by a set of parameters, usually
based on the first two or three moment characteristics of the observed streamflow data.
One popular class of parametric models are the Autoregressive Moving Average (ARMA)
models. Some of the drawbacks of stochastic streamflow modeling using ARMA models
are:

(1) ARMA models assume that the dependence between flows is linear, or, that the
flows can be adequately described as originating from a Gaussian joint probability
distribution. In cases where this is not true, the data are required to be transformed to
Gaussian by an appropriate transformation. Choosing a transformation may not be a
simple issue, particularly so if the underlying process is one that cannot be characterized
by one of the classical probability distributions such as Gamma or Lognormal.

(2) The normalizing transform admits only a limited degree of heterogeneity in the
statistical dependence structure of the simulated sequences. This can be a drawback for
data sets showing dependence of variance or correlation on the magnitude of streamflow.

(3) In spite of the fact that ARMA models have been around for the last 30 years or
so, practitioners often tend to base their decisions on the historical record (or a resampled
proxy thereof). This may reflect a consensus among practitioners that ARMA models are

deficient at representing the relevant features of real streamflow data.
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These points indicate the need for better approaches. The nonparametric methods
introduced in this work are hopefully a step towards fulfilling these needs.
Nonparametric methods avoid prior assumptions as to the form of dependence or of the
nature of probability distribution of streamflow variables. The models based on
nonparametric approaches are thus representative of the historical data rather than a set of
staustics derived from the data. Although this study dealt with streamflow simulation, the
models were kept general enough to be possibly applied to other areas of science and
engineering. The specific contributions include:

(1) Nearest-Neighbor Bootstrap--This resampling method was described in chapter
2. Some advantages of the nearest-neighbor bootstrap algorithm are its ability to model
linear and nonlinear dependence and multimodality in the probability density, and the
computational ease with which the procedure can be used.

(2) Nonparametric order p simulation model--This simulation method, described in
chapter 3, was based on kernel density estimation techniques. Unlike the nearest-
neighbor approach, simulations here are not required to be a part of the observed flows.
In addition, much like the nearest-neighbor approach, the dependence and distributional
features that can be inferred by the data are modeled effectively. .

(3) Nonparametric disaggregation model--This simulation method, described in
chapter 4, was developed to generate a vector of component or disaggregate flows
(seasonal or tributary flows), conditional to a given aggregate flow (annual or main
stream flow). Kernel density estimation methods were used. In addition to the
dependence between the disaggregate flow variables, the dependence between the
aggregate and the disaggregate components was modeled. The sum of the disaggregate

flows was required to be equal to the aggregate flow.



197

All of these models were analogous to the parametric methods of representing
dependence between different flow variables. However, use of the nonparametric
framework resulted in the simulations preserving a broader range of attributes of the
observed streamflow time series. Features such as asymmetry and multimodality in the
probability density, and nonlinearity in the dependence structure were modeled effectively
and automatically in the nonparametric model simulations. It is important that not only
were linear attributes modeled, but also a broader set of properties based on additional
distributional information translated automatically to the nonparametrically generated
sequences.

In developing the simulation models in chapters 3 and 4, a study of several
bandwidth estimation methods for kernel density estimation was conducted on samples of
sizes typically encountered in hydrology. Of the methods tested, results indicated that
maximum likelihood cross validation (MLCV) was computationally simple and gave
good estimates of the kernel bandwidth. Results from this study were presented in
chapter 5.

Historically, stochastic methods have been used in hydrology to study droughts,
floods, and issues relating to reservoir storage and reliability. By deﬁnitiox;, events such
as droughts or floods are infrequent and result in uncertain estimates because of the small
samples usually available. The design decisions based on the parametric methodology
have often involved extrapolations beyond the region where there are any real data. The
precision of parametric extrapolations in quantifying design variables may have lent an
unjustified sense of security. Nonparametric approaches may sometimes be incapable of
providing extrapolations beyond the range of the data (for example, in case of bootstrap
based approaches). However, this needs to be weighed against the fact that extrapolations

based on parametric approaches are inherently flawed in cases where the parametric joint
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density is incorrectly specified. This is likely to be the case when normalizing
transformations based on a limited set of options are applied on the data. Extrapolations
in the nonparametric framework are more accurate because a nonparametric approach is a
consistent estimator of the distributional characteristics of the data or the dependence
information thereof. Also, use of only a local neighborhood reduces the possibility of the
extrapolation being unduly biased by outliers. In the case of the bootstrap (which, by
construction, is unable to extrapolate beyond the range of the historical data),
modifications to the existing methodology (see chapter 2 for more information) can be
used to provide reasonable extrapolations. In short, in spite of the inability of some
nonparametric methods to extrapolate substantially beyond the range of the data, their use
is recommended because they offer consistent estimates of the underlying distribution and
thus have a lesser bias in estimates of the conditional mean, as compared to wrongly
specified parametric methods.

Although the various simulation approaches espoused in this work are complete in
themselves, several improvements can be suggested. The basic kemnel density estimator
or choice of the number of nearest neighbors can be chosen in a more rigorous manner. A
substantial improvement in the kernel estimator would be to have kernels tt;at are local,
i.e., they have locally defined orientations and spread parameters. Use of such kernels
would, amongst other advantages, result in lesser bias in regions where there are few
data points. Extrapolations based on such a kernel density estimate would therefore be
more accurate.

The disaggregation approach (chapter 4) can be improved by involving strategies
that reduce the dimensionality of the application. Recall that the application in chapter 4
was disaggregation of annual flows to monthly, which needs specification of a 12-

dimensional joint density estimate constructed from a small sample set. A more
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parsimonious representation could be to consider dependence on only the adjacent
months, which would reduce the dimensionality considerably. Approaches that model
year-to-year correlations could also be incorporated to provide better representation of the
persistence that is observed in streamflow sequences.

An important issue concerning the models described in this work is the
identification of model order. This issue was sidestepped by assuming the order for most
applications. It is well known that consideration of fewer than the correct number of lags
in streamflow simulation can result in biased estimates for reservoir storage. Estimation
of the model order poses many challenges since consideration of additional lags increases
the dimensionality of the density estimates, which is undesirable given the small samples
that are available in practice. An approach that identifies the important dependencies in the
data, based on their effect on the final application the streamflow sequences are put to,
should be considered. Such an approach should be flexible enough to accommodate non-
sequential lags (for example, lags 1, 3, and 5 instead of lags 1 through 5) that are able to
reproduce the dependence structure present in the data.

Other possible directions of future work include strategies for modeling flows at
smaller (daily or hourly) time scales; consideration of other hydrologic variables (such as
precipitation) in the modeling exercise; consideration of higher order noise terms (much
like the MA terms in ARMA models) that offer a better representation of the persistence
that may be present in the data; direct nonparametric modeling of reservoir storages or
severe droughts (approaches that sidestep the issue of simulating flow sequences);
application in alternative spaces using Fourier or Wavelet bases so as to capture scale-
dependent properties; approaches for modeling extreme events (floods and droughts) that
use nonparametric methods developed specially for the tails of the data; and extensions of

the simulation models to a forecasting scenario.
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The above-mentioned applications are only a few of the possible directions to which
nonparametric methods could be applied. Several other areas where quantification of

uncertainty is an important issue should also be examined.
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APPENDIX A. STATE DEPENDENT CORRELATION COEFFICIENTS
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This appendix describes the measures we used to quantify nonlinear dependence in

data. The usual estimator of lag 1 correlation is:

_ 1 n-1 = =
r"(n_l)sigl(xtx)(xm ) AD

where X and Si are the mean and variance of x;, t=1...n.
r,¢: Forward, above median correlation, is defined as the correlation between above
median flows and flows in the subsequent time step. This is calculated by replacing the

sum over all t in the expression above by the sum over those t for which X; is greater than

the median flow X oqiap, replacing the 8,2( by the product of the standard deviations of
the above median flows and flows one time step ahead of above median flows, replacing
X by the mean of the above median, and one time step ghead of above median flows and
adjusting n accordingly.

rp ¢ Forward, below median correlation, is the correlation between all below median
flows and the subsequent time steps flow, calculated in a similar manner with the sum
over those t for which

Xt < Xmedian-

T,p: Backward, above median correlation, is the correlation between above median flows
and the preceding time step's flow, calculated in a similar manner with the sum over
those t for which x4 | > Xpedian:

rpp: Backward, below median correlation, is the correlation between below median

flows and the preceding time step's flow, calculated in a similar manner with the sum

over those t for which Xt+1 < Xmedian-
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For a linear Gaussian process the above and below pair of correlations in either the
forward or backward direction should be the same. Differences indicate nonlinearity, or
state dependence in the dependence structure. To test the significance of differences
between sample correlation coefficients ry and ry the following test from Kendall and
Stuart [1979] was used. The test is based on the transformation of the correlation

coefficient r as:

1 1+r
2= Liog (121)
2 g I-r (A.Z)

The quantity 21 - z is closely normally distributed with zero mean and variance Y(ng-
3)+1/(ny-3), where n; and ny are the sample sizes, under the null hypothesis that zj and
z) are calculated from sample correlation coefficients from populations with the same

correlation coefficient. Therefore the significance test compares

(z1 -22)/ J 1/(nl-3)+1/(n2-3) to the standard normal distribution. This test is approximate
unless the samples are from independent bivariate normal populations. In section 6 we
used this test to investigate the significance of the difference between ff (=rp and rpf (=
rp). Sets of above and below median flows are effectively censored samples,
inconsistent with the independence assumptions. Nevertheless, an approximate measure

of whether these quantities are significantly different can be obtained by use of this test.
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APPENDIX B. DERIVATION OF MODEL STATISTICS
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We derive here the expected values of selected statistics of the NP1 model. These
depend on the observed data x;, kernel parameters A and S and the Gaussian kernel

function.

Marginal Distribution of X
The marginal density of X, (denoted f,(Xy) is estimated as

M=

f X)=[fx,x yax =13¢ A’s
m®) =X, X P dX,  =¢ 1G(Xt'xi’ 1) (B.1)

i

where

2
1 ) (Xt-xi

2
f X -x,AS )=—p—=——cexp| -————
Gt i 11 2
‘ [am's . s B.2)

denotes a Gaussian density function with mean x; and variance A2S1 1- This follows
from Equation (3.6) with H from Equation (3.7) and S expressed as Equation (3.19).
Equation (3.6) is the sum of n multivariate Gaussians each of which when integrated over
X.1 results in the univariate Gaussian given above. This marginal distribution is used to

calculate model mean, covariance and skewness.

Mean ' of X¢
This can be evaluated using the marginal distribution in (B.1). Since each kernel is

symmetric and centered at a data point, the NP1 model mean (') is the sample mean.

X, (B.3)

'_ -— A __1_
K —E[xt]-Ithm(xt)dxt_n. 1

n
i=
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Standard Deviation of X

The variance under the NP1 model can be written as
2 ne | _ n2 A
¢ = E[ (X,-1) ] = (X 1) XD de B.4)

where the expectation is over the marginal distribution, Equation (B.1). Since ?m(Xt)
from Equation (B.1) is a sum of Gaussian p.d.f.’s with individual means x; and

variances A2S and the x; have sample variance S1;, we get

l2_ 2
¢ = Sll(1+}» ) ®.5)

Note the inflation in the underlying variance by the factor (1+A.2).

Lag 1 Correlation

The lag 1 correlation (p1’) under the NP1 model is expressed as the ratio

E[ (Xt-u')(xt_l-u')]
P = 2 '
c (B.6)

where expectation is over the joint density estimate in (3.6). This expression simplifies to

2
(1+A )S12

= =r
1429 .5, B.7)

P'1
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where r denotes the sample lag 1 correlation:

S

/S S

11 22 (B.8)
Skewness
The coefficient of skewness (Y') under the NP1 model is defined as the ratio
w3 3a

E[ X1 ] I(Xt-u') £ (X) dt

Y= 7= 3 (B.9)

o' c'

where the expectation is over the marginal distribution in (B.1). By integrating over the

marginal distribution the numerator can be evaluated as

n
E[(Xt-u')3] =15 x3+3xs —1-Zx 3u'ks -3u—2x + 3 le -
i=1

1 nl"l
(B.10)
Now recognizing (B.3) the second and third terms cancel and this is equivalent to
3 1 3
B )’ | =L 5 )
=1 ! (B.11)

The expression for ¥ then becomes
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n
T2 o’
i=
y=—=l

()" ®.12

where g is the skewness estimator

3 3
T 2 ()
i=
B (B.13)
11

and Sj1 the sample variance. The decrease in skewness is due to the inflation of variance
by (B.5). The results derived here do not account for the cut and normalize boundary

corrections applied.
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