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ABSTRACT 

 

An Objective Method for the Intercomparison of Terrain Stability Models and  

Incorporation of Parameter Uncertainty 
 

 
by 
 
 

Kiran Chinnayakanahalli, Master of Science 

Utah State University, 2004 

Major Professor: Dr. David G. Tarboton 
Department: Civil and Environmental Engineering 
 
 

A terrain stability map quantifies the propensity for landslide initiation at a point in space.  

There are a number of process-based models used for terrain stability mapping.  SHALSTAB and 

SINMAP are two such models that combine steady-state hydrology assumptions with the infinite-

slope stability model to quantify slope stability.  SHALSTAB quantifies terrain instability in 

terms of the critical effective rainfall required to trigger pore pressure-induced instability.  

SINMAP quantifies terrain stability in terms of the probability that the infinite-slope stability 

model factor of safety is greater than one over uniform probability distributions quantifying the 

uncertainty in model parameters.  These are two models with similar physical basis but they use 

different indices to quantify instability.  Because of this, the relative performance of these models, 

when compared to observed landslide locations, is difficult to assess. 

A new statistic based on the cumulative fraction of the stability index at locations of 

observed landslides, relative to the cumulative fraction of the stability index over the entire 

terrain, has been developed.  This statistic quantifies the discriminatory capability of a stability 

map in terms of the degree to which a terrain stability map is successful in "capturing" observed 

landslides in areas mapped as unstable while minimizing the extent of these areas.  This statistic 
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provides a way to compare models that use different stability indices and is a quantity that can be 

used for the calibration or optimization of model parameters using observed landslide initiation 

locations.  This is useful when physical data necessary to estimate model parameters is limited. 

Instead of searching for single optimal parameter sets, a modified Generalized Likelihood 

Uncertainty Estimation (GLUE) methodology is used to perform a random search over the model 

parameter space and establish behavioral parameter sets for each model.  This approach provides 

an objective way for the selection of parameters to compare the discriminatory capability of 

different models and also provides a basis for quantifying the uncertainty associated with model 

predictions. 

We show results where the performance of these models that use different indices is 

compared using data from the Chetwynd area in east central British Columbia where 696 

landslide initiation locations were mapped.  We found that in this particular region, slope was the 

dominant variable that discriminated terrain instability.  The optimally calibrated SHALSTAB 

and SINMAP models that also use drainage area as a predictor offered improvement over slope 

alone.  The additional flexibility of the probability framework used by SINMAP gave it a slight 

advantage over SHALSTAB in discriminating unstable terrain. 

 

(114 pages) 
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CHAPTER 1 

INTRODUCTION 

Shallow landslides comprise mass wasting characterized by translational slides of 

rocks and debris at a relatively small depth.  The sudden failure and high speed of 

shallow landslides result in the destruction of downstream resources, property, and lives 

(Montgomery and Dietrich, 1994).  This necessitates the modeling of shallow landslide 

occurrence and mapping of their probability of occurrence in large spatial areas. 

A model predicting the stability of a hillslope must capture the topographic and 

hydrologic influence on landslide susceptibility.  The availability of continuously 

improving topographic data has helped landslide hazard mapping models to distinguish 

unstable terrain on a more refined scale.  However this introduces the extra difficulty of 

estimating properties like soil strength, soil thickness, and root strength that have a strong 

influence on the potential for landslides but are spatially heterogeneous and difficult to 

measure at a refined topographic scale. These factors can vary significantly even at a 

scale of few meters (Dietrich, Bellugi, and de Asua, 2001). This makes landslide hazard 

mapping based on these criteria an arduous task. 

There are many terrain stability models in use.  The differences between models 

introduce the need to objectively compare models and evaluate their capability to 

discriminate unstable areas.  The purpose of this study is to answer some of the problems 

of terrain stability mapping relevant to model comparison, uncertainty estimation, and, 

automatic calibration.  
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Problem Statement 

Terrain stability mapping involves assessment of the propensity for landsliding 

based upon observations of landslide occurrence in similar topographic locations.  

Approaches range from manual mapping that relies on experience and expert knowledge 

to multivariate analysis and mechanistic based theory (e.g. Dietrich, Bellugi, and de 

Asua, 2001) utilizing computer programs and geographic information systems.   

Manual mapping of landslide hazards (e.g., WFPB, 1997) is performed with aerial 

photography and field investigation. Based on knowledge of geology and topography, 

areas are classified into landslide hazard categories using expert judgment. This method 

relies heavily on an individual’s expertise and experience, to differentiate between stable 

and unstable areas. 

Multivariate analysis attempts to overcome the qualitative weaknesses of 

judgement based manual mapping by correlating terrain attributes with landslide 

occurrence to estimate landslide propensity in locations with similar terrain (Carrera, 

1983; Carrera et al., 1991; Carrera et al., 1995).  This approach, though more quantitative 

than manual mapping, is empirical in nature and hence there are limitations to 

extrapolation beyond the study region (Dietrich, Bellugi, and de Asua, 2001).  

This study focuses on two physically based models, SHALSTAB (Montgomery 

and Dietrich, 1994) and SINMAP (Pack, Tarboton, and Goodwin, 1998).  Both of these 

models couple digital representation of the topography, an infinite-slope stability model 

that balances the destabilizing components of friction and cohesion on a failure plane 

parallel to the ground surface, and, a shallow subsurface flow model to predict the spatial 

distribution of relative slope stability.  The models differ in that SHALSTAB uses the 
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ratio of effective rainfall (or recharge) to transmissivity (R/T) that is required to induce 

instability as a stability measure while SINMAP uses a stability index based on the 

probability of stability recognizing uncertainty in model parameters.  Parameter 

uncertainty is modeled through the use of uniform probability distributions between 

lower and upper bounds for uncertain parameters. Detailed descriptions of these models 

are given later, together with a review of other terrain stability modeling approaches 

available in the literature. 

Given the choice of models or variables predicting terrain stability, it becomes an 

important question to ask, which one of them is performing better? The fact that different 

models use different indices to categorize stability makes the comparison task that much 

more difficult.  It should be kept in mind that the performance may be dependent on the 

study area.  Therefore, whenever it is decided to implement stability models to address 

issues of landslide stability, it is necessary to do model intercomparison studies to come 

up with a model that conforms better to the geographical region considered.  Model 

intercomparison is an important field of study in hydrology, but although many studies 

have been carried out to validate terrain stability models, we are not aware of any studies 

that have compared different models objectively.  This kind of study is important as it can 

help the end user with limited knowledge to choose the model with better predictive 

capability. 

Process based distributed models such as SHALSTAB and SINMAP are 

parameter intensive in nature. In order for these models to be used, one needs to know the 

values of quantities like soil thickness, strength, and transmissivity in the study area. It is 

often difficult to quantify these variables or their spatial variability. Studies applying 
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process-based models typically use some kind of average or representative values, 

available from previous investigations in the area, that inevitably have some uncertainty 

associated with them. When a new site is selected for study, it may be a daunting task to 

collect the parameter data required to run the model.  This necessitates the development 

of a methodology that can estimate the values for such parameters and may further help 

in quantifying the predictive and parameter uncertainty. 

The input data set for SHALSTAB consists of topographic slope and specific 

catchment area and material properties, specifically friction angle and dimensionless 

cohesion.  The input data set for SINMAP also consists of topographic slope and specific 

catchment area and parameters quantifying climate, hydrologic and material properties 

(Pack, Tarboton, and Goodwin, 1998).  SINMAP, being a probabilistic model requires an 

input range for many of its parameters.  To run SINMAP, one has to supply as inputs the 

upper and lower bounds for dimensionless cohesion, C, the ratio of transmissivity to 

recharge, T/R, and soil friction angle, φ. The ranges so specified must be those pertaining 

to the study area. Considering the spatial variability of these quantities, it can be difficult 

to obtain parameter values and assess parameter ranges.  

SINMAP provides a graphical procedure for the manual, or interactive, 

calibration of model parameters while referring to a plot of slope versus specific 

catchment area that displays both observed landslides and threshold stability index lines.  

The user adjusts parameters within what he or she feels to be physically reasonable 

ranges trying to position the model threshold lines that are controlled by parameter inputs 

so that they discriminate the domain in slope area space that holds the densest clustering 

of observed landslides.  This relies on the experience and skill of the user.  An automatic 
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calibration procedure that can quantify the parameters with minimum knowledge 

requirement can be a very useful tool. 

Automatic model calibration has been widely studied, often in conjunction with 

efforts to quantify parameter and model uncertainty (Kuczera, 1983; Madsen, 2000).  

Beven and Binley (1992) introduced the generalized likelihood uncertainty estimation 

method (GLUE) for parameter estimation and quantification of uncertainty associated 

with rainfall runoff models.  This method has since been applied in other areas (Brazier et 

al., 2000; Christianes and Feyen, 2002).  In the GLUE methodology, parameters are 

sampled at random from broad feasible parameter ranges and a likelihood (goodness of 

fit) measure used to identify those parameter sets that acceptably fit the observations.  

These are called behavioral parameter sets.  Beven and Binley (1992) oppose the idea 

that there is a single optimum parameter set.  Rather, they advocate equifinality, or non-

uniqueness, recognizing that multiple parameter sets may adequately represent a modeled 

data set.  Uncertainty in model predictions is quantified by sampling over the set of 

behavioral parameters.  Kuczera and Parent (1998) have shown that there are more 

efficient ways (e.g., Metropolis algorithm) of sampling the parameter space than the 

general random approach of GLUE.  This study utilizes the GLUE methodology to 

perform automatic calibration and to quantify parameter and predictive uncertainty. 

Objectives 

 The goal of this work was to develop an objective method to compare and 

evaluate terrain stability models that differ in their approximation the physics, input 

parameters and output measure of terrain stability.  The specific objectives were: 
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a)  To develop a general objective measure to quantify the performance in terms 

of discriminating capability of a terrain stability model relative to observed 

landslide locations. 

b) Implement the GLUE method with the general objective function to estimate 

behavioral parameter sets that acceptably fit the observations and quantify 

prediction uncertainty associated with parameter uncertainty, and  

c) Apply the general objective function to compare SINMAP and SHALSTAB 

and quantify the space of behavioral parameters for each model. 

The premise of this approach is that the propensity for landsliding can be 

quantified based upon topographic variables.  A discriminating model is one that 

produces an output stability measure that, when used to classify the domain, captures a 

large number of landslides in a small fraction of the area.  By using a terrain stability 

measure based on topographic variables the assumption is that future landslides are more 

probable in topographic settings similar to where past landslides have been observed. 
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CHAPTER 2 

LITERATURE REVIEW 

Hydrologic Models and Terrain Stability 

A rainstorm or rapid snowmelt can lead to sufficient infiltration such that pore 

water pressure builds up at the contact between the soil mantle and the underlying 

impermeable or less permeable layer such as bedrock.  The increased pore pressure 

reduces the effective normal stress, which through the friction angle, is related to the 

shear strength.  The condition of reduced shear strength at the failure plane can trigger 

shallow landslides. Dietrich, Wilson, and Reneau (1986) suggest that topographically 

driven convergence of subsurface flow plays a role in increasing pore pressure resulting 

in the initiation of shallow landslides in fine-scale topographic hollows.  The two main 

components of topography that are related to shallow landslides are slope and 

topographic control on convergence of shallow groundwater that leads to increased pore 

water pressure. The groundwater response following a rainfall event can be modeled by 

many hydrologic models like TOPOG (O’Loughlin, 1986) and TOPMODEL (Beven and 

Kirkby, 1979; Beven, 1997), which predict the spatial distribution of soil saturation. The 

slope stability component can use this saturation distribution to map unstable regions in 

the landform. 

The topographic property used to quantify topographic convergence is specific 

catchment area (Beven and Kirkby, 1979).  Specific catchment area, a, is defined as 

upslope area per unit contour width [m2/m] (Figure 2-1). Given the tendency for water to 

flow downhill, specific catchment area serves as a useful surrogate for the subsurface 
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lateral water flux. The steady state hydrology parameterizations used by SINMAP and 

SHALSTAB slope stability models have their roots in hydrologic models like TOPOG 

(O’Loughlin, 1986) and TOPMODEL (Beven and Kirkby, 1979; Beven, 1997).  These 

models assume that shallow subsurface flow is downslope following the topographic 

gradient, and that downslope subsurface discharge at each point is in equilibrium with a 

steady state recharge (R [m/hr]).  It follows from these assumptions that depth integrated 

downslope discharge per unit contour length, q [m2/hr] can be expressed as 

 

aRq =  (2.1) 

 

If one assumes that the soil profile has a transmissivity (depth integrated hydraulic 

conductivity) T [m2/hr], the capacity for downslope flux (maximum subsurface discharge 

for a given soil thickness) at each point is obtained from Darcy's law as Tsinθ, where θ is 

 

 

Figure 2-1. Definition of specific catchment area. 
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the topographic slope angle and the maximum hydraulic gradient is dL
dhsin =θ . The 

relative wetness of a soil profile is related to the ratio of the lateral moisture flux q to the 

lateral subsurface flow capacity Tsinθ.  This is used to define a wetness measure. 

 









θ
=








θ
= 1,

sinT
aRmin1,

sinT
qminw  (2.2) 

 

The wetness measure has an upper bound of one because lateral flux q in excess 

of the lateral flow capacity is assumed to form overland flow. 

TOPMODEL (Beven and Kirkby, 1979) further assumes that hydraulic 

conductivity decreases exponentially with depth.  Lateral flow is assumed to occur in the 

saturated zone below the water table.  The depth to the water table adjusts so that the 

lateral flow capacity below the water table is equal to the lateral flow.  With this 

assumption the depth to the water table is proportional to 







θsinT
Raln .  This subdivides 

into 







θ
+








sin
aln

T
Rln .  The second term is a topographic variable and is defined as the 

TOPMODEL topographic wetness index ln(a/sinθ).  TOPMODEL actually uses tanθ in 

this expression, a difference that is inconsequential for small slopes.  For steep slopes the 

approximation θ=θ tansin  is not valid and it is correct to use sinθ in the equation 

because flow is along the length of the slope.  
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SHALSTAB (Montgomery and Dietrich, 1994) and SINMAP (Pack, Tarboton, 

and Goodwin, 1998) use the simpler assumption that hydraulic conductivity is constant 

over a soil depth D.  Transmissivity is then K.D and w in equation 2.2 represents the 

fraction of soil depth D that is required to be saturated to conduct the lateral flow q.  The 

ratio R/T [m-1] is a time varying quantity that gives area averaged relative wetness in 

terms of assumed steady state recharge relative to the soil’s capacity for lateral drainage 

of water.  Although the term ‘steady state’ is used with lateral flux approximated using 

Equation (2.1), the quantity R is not a long term (e.g. annual) average of recharge.  

Rather, it is the effective recharge for a critical period of wet weather likely to trigger 

landslides.  The ratio R/T combines both climate and hydrogeological factors.  The 

quantity (T/R)sinθ [m] may be thought of as the length of hillslope (planar, not 

convergent) required to develop saturation in the critical wet period being considered.   

Once soil wetness is computed, it becomes the role of the infinite-slope stability 

model to utilize these data to categorize unstable regions in the landform through the 

relationship between relative wetness and pore pressure that affects shear strength.  

SHALSTAB uses w from Equation 2.2 to derive pore pressure in the infinite-slope 

stability model and then to solve for the critical R/T required to trigger instability at each 

location.  SINMAP uses R/T as an input model parameter with a uniform distribution.  

The w from equation 2.2 is then used to derive pore-pressure used with the infinite-slope 

stability model to calculate factor of safety and the probability of stability. 
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Slope Stability Models 

The infinite-slope stability equation used by many process-based models 

resembles the one used by Hammond et al. (1992) in Level I Stability Analysis (LISA) 

model which is based on the Mohr-Coulomb failure law.  The infinite-slope stability 

model used by LISA calculates a factor of safety that is the ratio of the restoring 

components of friction and cohesion to the destabilizing components of gravity on failure 

plane. LISA has the following assumptions: 

a) Downslope discharge flowlines and the groundwater level are parallel to the 

topographic surface. 

b) The failure plane is of infinite length parallel to the topographic surface. 

c) Only one soil layer is considered. 

The failure plane of infinite length assumption applies when the length of the 

failure plane is large compared to soil thickness. Iverson and Major (1986, 1987) and 

 

 

Figure 2-2. Infinite-slope stability model schematic. 

Failure plane 
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Iverson (2000) discuss the limitations associated with the assumption of flow parallel to 

the topographic surface/failure plane.  They report that the factor of safety may be 

significantly overestimated or underestimated, depending on the actual direction of 

seepage.  At the level of the simplified models being evaluated here the information 

necessary to calculate seepage directions is rarely available so this work uses the parallel 

flow assumption. The infinite-slope stability model is illustrated in Figure 2-2.  The 

infinite-slope stability model factor of safety (FS) is given by Hammond et al. (1992): 

 

( ) ( )[ ]
[ ]wsw0

wwsw0
2

sr

gD)DD(gqcossin
tanDggDDgqcosCC

FS
ρ+−ρ+θθ

φρ−ρ+−ρ+θ++
=  (2.3) 

where 

Cr = apparent root cohesion [N/m2] 

Cs = soil cohesion [N/m2] 

θ = slope angle, the arc tangent of slope, S, which is the change in elevation per 

unit horizontal distance. 

q0 = tree load [N/m2] 

ρs = bulk density of saturated soil below the water table [kg/m3] 

ρ = bulk density of soil above the water table [kg/m3] 

ρw = density of water [kg/m3] 

D = vertical soil depth 

Dw = vertical height of the water table within the soil layer [m] 

φ  = internal frictional angle. 

In Figure 2-2,  
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h = D cosθ (2.4) 

where h[m] is the soil thickness perpendicular to the slope.  This equation predicts the 

effect of pore pressure due to a water table thickness hw and vertical height Dw on the 

shear strength at the failure plane.  With the assumption of uniform hydraulic 

conductivity these water table variables are related to relative wetness from Equation 2.2 

using 

 

h
h

D
D

w ww ==  (2.5) 

 

Pack, Tarboton, and Goodwin (1994) combined Cr and Cs with soil density and 

thickness to obtain a dimensionless cohesion C expressed as 

 

( )
gh
CC

C
s

sr

ρ
+

=  (2.6) 

 

C quantifies the contribution from cohesive forces to the slope stability.  Dietrich 

et al. (2001) in developing SHALSTAB with cohesion, used a similar non-dimensional 

cohesion term, with the difference that Cs in SHALSTAB is taken as zero and 

SHALSTAB uses D instead of h Equation 2.6. 

Pack, Tarboton, and Goodwin (1998) assumed q0 in Equation 2.3 to be equal to 

zero and took ρ = ρs in their slope stability equation.  

Further, denoting the water to soil density ratio r
s

w =
ρ
ρ

 (2.7) 
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the factor of safety, FS, can be expressed as  

 

[ ]
θ

φ−θ+
=

sin
tanwr1cosCFS  (2.8) 

In the above equation, the relative wetness measure w is the key quantity that 

connects the hydrologic model to the infinite-slope stability model.  This equation is the 

basis for SINMAP (Pack, Tarboton and Goodwin, 1998) that uses slope (derived from the 

digital elevation model) and w (obtained from the hydrologic model) to calculate the 

relative stability at each grid point. 

Pack, Tarboton and Goodwin (1998), account for uncertainty by assuming 

parameters to be uniformly distributed between the lower and upper bounds.  The bounds 

represent the feasible ranges of the parameter expected in the study area.  The model 

outputs a stability index (SI) at each digital elevation model (DEM) grid cell.  SI is 

defined as the probability that a location is stable (FS>1) assuming uniform probability 

distributions for the parameters.  The values of SI vary between 0 (most unstable) and 1 

(least unstable).  In the domain where the probability that FS>1 equals one, the model is 

not discriminating.  This occurs when FS > 1 for the most unstable limits on the 

parameters.  In these cases, SI is given the value of the factor of safety with the parameter 

values at their most unstable bound limits. 

Montgomery and Dietrich (1994) built on the work on distributed landslide 

modeling carried out by Okimura and Ichikawa (1985) to develop a process-based model 

to predict land instability. The model combined digital terrain data with the infinite-slope 

stability model and the hydrologic model TOPOG (O’Loughlin, 1986), to map the spatial 
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patterns of potentially unstable zones in the terrain. Montgomery and Dietrich (1994) in 

their initial form of the model ignored cohesion and assumed uniform soil thickness.  

They solved for the critical steady state rainfall for each location that increases the 

wetness to the point where the factor of safety, FS, is equal to one and the slope becomes 

unstable. The steady-state-critical-rainfall, R, required to cause instability provides a 

measure of the relative potential for landslide instability because the occurrence of 

instability inducing wetness is more likely at locations with smaller critical R. The steady 

state critical rainfall, R, is given by the following equation: 

 









φ
θ

−







ρ
ρθ

=
tan
tan1

a
sinTR

w

s
cr . (2.9) 

 

Montgomery and Dietrich (1994) estimated both soil and hydrologic parameters 

required by the model based on their field experience in their study areas in Marin 

County, California, and Mettman Ridge, Oregon.  They treated the parameters as 

spatially constant, though they recognized that spatial variability could be incorporated. 

The spatially constant assumption was merely because data were not available.  While 

acknowledging the uncertainty in the estimation of hydrologic parameters, soil 

conductivity, thickness, bulk density, and friction angle, they did not adopt the Monte 

Carlo method for predicting the spatial distribution of the parameters because they felt 

that Monte Carlo method would obscure the topographic influence on slope stability.  

Later Dietrich et al. (1998) included the cohesion term as follows: 
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Here 
gD

CC
s

r*

ρ
= , with Cr the apparent cohesion due to roots, g the acceleration 

due to gravity and D the vertical soil thickness.  This is different from SINMAP (Pack, 

Tarboton, and Goodwin (1998), which considers depths perpendicular to the soil surface.  

Instead of critical rainfall, this equation represents instability using the ratio of rainfall to 

transmissivity (R/T) as the index of instability. 

Borga, Fontana, and Cazorzi (2002) used a quasi-dynamic wetness index model 

developed by Barling, Moore, and Grayson (1994) to model the spatial distribution of the 

soil saturation in response to a rainfall of specified duration.  This concept is different 

from the steady state wetness index model used by SHALSTAB and SINMAP.  The 

steady state hydrologic model used in SINMAP and SHALSTAB assumes that the 

specific catchment area is predictive of the subsurface flow at any given point. However, 

this is valid only if the recharge to a perched water table occurs “for the length of time 

required for every point along the hillslope to reach subsurface drainage equilibrium and 

experience drainage from its entire upslope contributing area” (Barling, Moore, and 

Grayson, 1994).  The quasi-dynamic wetness index model considers the time for the 

subsurface water to redistribute across the catchment.  Barling, Moore, and Grayson 

(1994) assumed a uniform recharge and routed the subsurface flow using a spatially 

variable velocity which depends on the local slope. Borga, Fontana, and Cazorzi (2002) 

combined this subsurface flow model with the infinite-slope stability model for a 
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cohesionless soil of constant thickness to identify unstable topographic elements so as to 

account for the duration associated with the critical rainfall.  Borga's approach replaces 

Equation (2.9) by 
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where d is the duration of rainfall, a(d) the dynamic specific catchment area that 

contributes given rainfall of duration d and R(d)cr the consequent critical rainfall.  The 

hydrologic relationship between duration and frequency of occurrence of the rainfall 

causing instability in the topographic element is evaluated for a range of durations and 

terrain stability is quantified using the shortest return period (highest frequency of 

occurrence) of the critical rainfall at each point over the set of rainfall durations tested.  

Thus, terrain stability is quantified based on the probability of critical destabilizing 

rainfall accounting for partial contributing area effects and rainfall intensity, duration, 

and frequency properties. 

Wu and Sidle (1995) presented a dynamic model that integrated the infinite-slope 

stability equation, a kinematic wave groundwater model, and a continuous change root 

strength model.  Wu and Sidle (1995) followed the work of Moore and Grayson (1991), 

to combine surface and subsurface kinematic models for the dynamic simulation of soil 

wetness in response to an input time series of precipitation.  This approach allowed the 

investigation of FS both in the temporal and spatial dimension as well as examination of 

the impact of timber harvesting and forest management. Wu and Sidle used averages 
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from the study of Schroeder and Alto (1983) to obtain their soil parameters. They 

recognized, following the work of Gray and Megahan (1981), that the factor of safety 

given by the infinite-slope stability model is most sensitive to soil cohesion, root 

cohesion, soil depth, and slope angle while moderately sensitive to the groundwater 

height and frictional angle.  

In Wu and Sidle's (1995) model landslides are assumed to occur when FS 

becomes less than 1.  Landslide volumes were calculated and Wu and Sidle report the 

changes in landslide volumes modeled when the soil characteristics were varied.  

Uncertainties involved with the spatial distribution of the parameters like soil depth 

complicated the problem of comparing the simulated locations of failure with the survey 

data (Wu and Sidle, 1995).  The study recognized the difficulties in accurately 

determining some of the sensitive parameters while still maintaining the advantages of 

spatially distributed models. 

The discussion on parameters from different approaches so far has pointed to the 

fact that models are only as good as their parameters. Hence, it becomes an important 

task to estimate parameters. The following discussion of parameter uncertainty follows 

the work of Beven and Binley (1992). 

Generalized Likelihood Uncertainty 
Estimation (GLUE) Methodology 
 

The common approach to calibration in hydrology is to search for a global 

optimum set of parameters.  Many hydrologic studies (for example Ibbitt and O’Donnell, 

1971; Kuczera, 1983; Kuczera, 1990) have illustrated the difficulties in finding such an 

optimum set of parameters.  Difficulties arise from the presence of threshold parameters, 
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from the intercorrelation among parameters, from autocorrelation and heteroscedascity in 

the residuals and from insensitive parameters (Kuczera and Parent, 1998). Such effects 

result in local minima, and, valleys and plateaus in the parameter response surface 

(Beven and Binley, 1992).  Difficulties increase with the number of parameters.  

Physically based distributed models generally have many parameters and hence are 

ridden with parameter estimation problems. 

Beven and Wood (1983) addressed the problem related to the parameterization of 

physically based distributed hydrologic models by arguing that in order to realistically 

represent a physical process one has to acknowledge the uncertainty involved. Beven and 

Binley (1992) suggested a need for realistic estimation of predictive uncertainty. In this 

context, they introduced the Generalized Likelihood Uncertainty Estimation (GLUE) 

procedure for quantifying the predictive uncertainty of a model and parameter set.  The 

GLUE procedure can also be used for parameter estimation. 

GLUE assumes the equivalence or near equivalence of different parameter sets as 

simulators of systems.  This property of different parameter sets that behave as equally 

capable simulators producing similarly acceptable behavior of the physical system, is 

termed equifinality (Beven and Binley, 1992).  Finding behavioral parameter sets 

requires a large number of model runs for different sets of parameters that are chosen 

from probability distributions (often uniform) over their feasible range. An important 

requirement of the GLUE protocol is the generalized likelihood measure that ascribes 

each parameter set used to run the model a value, which is a measure of its predictive 

capability or goodness of fit. Such assignment may be based on direct comparison with 

the observed values or on a priori knowledge about the system. The likelihood measure 
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quantifies how well the model and parameter set conforms to the observed behavior of 

the system. Any interaction between the parameters will be implicitly reflected in the 

likelihood values.  The likelihood measure should increase or decrease monotonically as 

the goodness of fit increases. 

The requirements for application of the GLUE procedure are as follows (Beven 

and Binley, 1992): 

a) Formal definition of a likelihood measure which quantifies the predictive 

capability of the parameter set. 

b) Definition of the initial range or distribution of parameter values to be 

considered for a particular model structure. 

c) A procedure for using likelihood measures in uncertainty estimation.  This 

procedure results in the behavioral parameter sets whose distribution quantifies 

the parameter uncertainty and leads to the estimation of predictive uncertainty in 

step 5. 

d) A procedure for updating likelihood measures recursively as new data become 

available.  This refers to a Bayesian approach of updating the likelihood function 

conditioned on the new data. 

e) A procedure for evaluating uncertainty such that the value of additional data 

can be assessed.  This requires assessing how uncertainty quantified across the 

behavioral parameter sets changes as new data become available. 

Although the concept of likelihood has formal meaning in probability theory, in 

the GLUE methodology it is extended to encompass any measure of goodness of fit of a 

model, not limited to the probabilistic definition. 
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In this study, we develop an objective measure, denoted Q, that quantifies the 

effectiveness of a terrain stability map in a general non-parametric way.  We suggest this 

be used as a likelihood measure in the GLUE procedure so that the GLUE methodology 

can be applied to the terrain stability-mapping problem.  Only the first three requirements 

of the GLUE method are pertinent to our study and we did not implement the last two 

steps.  We therefore refer to the GLUE procedure used within our parameter optimization 

as the modified-GLUE method. 

Terrain Stability Model Performance Evaluation  

Model performance evaluation is a general process following model 

development which informs potential users of the effectiveness of the model.  

Performance evaluation of a terrain stability model is done by comparing the observed 

landslide locations with the model predictions (Dietrich et al., 1998; Dietrich, Bellugi, 

and de Asua, 2001; Montgomery et al., 2000; Montgomery, Sullivan, and Greenberg, 

1998; Borga, Fontana, and Cazorzi, 2002; Zaitchik, van Es, and Sullivan, 2003).  For 

the model to perform well, most of the observed landslides, should be contained in the 

unstable area of the terrain as predicted by the model.  A better model would contain 

more landslides in its unstable region.  Performance evaluation can be used to compare 

the performance of one model with different parameters, as in parameter calibration, or 

to compare the performance of different models.   

Montogomery, Sullivan, and Greenberg (1998) used an inventory of 3224 

mapped landslides in Oregon and Washington covering an area of 2993 km2 over 14 

watersheds to evaluate the SHALSTAB terrain stability model.  Montgomery, Sullivan, 
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and Greenberg (1998) used a threshold of critical rainfall, Rcr (the minimum rainfall 

required to cause instability in a grid cell) as an index to categorize stability zones. They 

used seven Rcr categories (varying between least to stable zones) to create the terrain 

stability map.  The distribution of landslides in Rcr categories was statistically tested to 

evaluate the model.  The null hypothesis used by Montgomery, Sullivan, and Greenberg 

(1998) was that if the model is not discriminating the relative landslide hazard the 

distribution of landslides in each Rcr category occurs in proportion to the area of that Rcr 

category.  That is, if the model is discriminating then it would have higher density of 

observed landslides in unstable categories and hence the null hypothesis would be 

rejected.  The density of landslides is the number of landslides in each category divided 

by the terrain area in each category. 

Montgomery, Sullivan, and Greenberg (1998) used Pearson’s chi-square statistic 

for goodness of fit for categorized data to test their null hypothesis.  They found that the 

test statistic was statistically significant for each watershed leading them to reject the 

null hypothesis. 

Other studies by Dietrich et al. (1998) and Dietrich, Bellugi, and de Asua 

(2001), used the same data and the model (SHALSTAB) to study the effects of forest 

clearing on landsliding.  Here, they use log(Rcr/T) as the stability measure instead of Rcr.  

Dietrich et al. (1998) and Dietrich, Bellugi, and de Asua (2001) used polygons to 

represent the observed landslide locations which are compared with model predictions.  

The polygons can cover more than one grid cell and in such cases the lowest value of 

log(Rcr/T) lying within the polygon is assigned to the landslide.  This causes a bias 

towards lower values of log(Rcr/T), and hence an evaluation method like the one 
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followed by Montgomery, Sullivan, and Greenberg (1998) would be biased toward 

showing better performance of the model. 

To see if there is a significant bias toward low values of log(Rcr/T), Dietrich et 

al. (1998) and Dietrich, Bellugi, and de Asua (2001) use a similarly biased random 

model as a point of reference to test the performance of SHALSTAB.  The biased 

random-model creates as many landslides as were actually observed of approximately 

the same size as the median size of the observed landslides. It then places them 

randomly in the terrain.  As with the observed landslides, Dietrich et al. (1998) and 

Dietrich, Bellugi, and de Asua (2001) assign the lowest value of log(Rcr/T) to each of 

the randomly generated landslides.  Dietrich et al. (2001) hypothesize that if the bias is 

significant, then the distribution of landslides in various log(Rcr/T) categories must be 

similar to the distribution obtained by the random model.  If not, the model is said to be 

discriminating the relative landslide hazard. 

Dietrich et al. (1998) and Dietrich, Bellugi, and de Asua (2001) use plots of 

landslide density versus the log(Rcr/T) to evaluate the model performance relative to the 

random model (Figure 2-3).  If there is no bias because of allocation of the lowest 

log(Rcr/T) to the landslide, then the landslide density curve from the random model will 

be flat as shown by the horizontal line in Figure 2-3.  The bias caused the random model 

to have slightly higher landslide incidence at lower values of log(Rcr/T).  For the model 

to perform better, it should have higher incidence of landslides than the random model 

at lower log(Rcr/T) categories.  Dietrich et al. (1998) showed that SHALSTAB 

performed better than the random model in all the seven North California-watersheds 
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used in their study.  They, however, do not report the statistical significance of 

differences between SHALSTAB and the random model performances. 

Zaitchik, van Es, and Sullivan (2003) present a method that is different from the 

methods mentioned above to evaluate terrain stability models.  Zaitchik, van Es and 

Sullivan (2003) acknowledge that when landslides are triggered by local factors not 

accounted for by the physically based models, the spatial distribution of the landslides 

will be different from the spatial structure of the model predictions.  In general, 

landslides are clustered because of the local interaction or mutual correlation with a 

single destabilizing process which might be active locally and not accounted for by the 

model.  Such clustering, Zaitchik, van Es, and Sullivan (2003) suggest would introduce 

a spatial bias in the model evaluation.   

Zaitchik, van Es, and Sullivan (2003) applied SINMAP to an agricultural area in 

central Honduras to study the affect of hurricane Mitch.  Zaitchik, van Es, and Sullivan 

(2003) noted that the observed landslide locations were more closely clustered than 

those predicted by SINMAP which indicates that fine scale physical phenomena not 

captured by the model may play a role in initiating landslides.  Zaitchik, van Es, and 

Sullivan (2003) improved the model performance by aggregating the observed 

landslides on a scale of 150m.  This method would imply that two different models can 

be made to perform well at different aggregation scales. 
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Dhakal, Amada, and Aniya (2000) like others recognized that a large number of 

observed landslides in the unstable category of the hazard map provides an indicator of 

the performance of the model, but did not mention that such categorization must have 

smaller associated terrain area to imply a better model performance.  They used a 

multivariate statistical approach to create a hazard map for the Kulekhani watershed 

located in the Lesser Himalayan region of the Himalayan belt in the central region of 

Nepal.  A split sampling method was used to evaluate the model.  The total number of 

observed landslides was divided into two sets, and one of them was used in the 

multivariate statistical method to create a landslide hazard map that had categories: 

Unstable, Moderately Unstable, Less Unstable and Least Unstable.  The second set (test 

landslides) of observed landslides was mapped on the hazard map and the incidence of 

 

Figure 2-3. Example of landslide density plots used in the evaluation study by Dietrich et
al. (1998). 
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the test landslides in the unstable category was compared with the previous set of 

landslides used in the creation of the hazard map.  This is not the most stringent type of 

test to evaluate the model but Dhakal, Amada, and Aniya (2000) used it to study the 

general effect of sampling on the resulting hazard maps. 

Borga, Fontana, and Cazorzi (2002) compare their quasi-dynamic terrain 

stability model with a steady state model (similar to SHALSTAB) by plotting the 

cumulative distribution of the model stability measure at observed landslides against the 

cumulative distribution of the model stability measure over the terrain.  The objective 

measure, Q, that we develop below (see Chapter 4) for quantifying the discriminating 

capability of terrain stability maps, results from an integration of plots like this.  Using 

this graphical approach, Borga, Fontana, and Cazorzi (2002) demonstrated that quasi-

dynamic model performed better than the steady-state model in discriminating 

landslides.  However, this finding is difficult to generalize because the comparison was 

done without optimizing the model parameters. 
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CHAPTER 3 

STUDY AREA 

This work was performed using data from the Chetwynd area in British Columbia, 

Canada (Figure 3-1).  This area was chosen because the data were readily available from 

a previous study by Pack (personal communication) who mapped and checked the quality 

the landslide initiation locations. 

The study area lies in the foothills of the Rocky Mountains to the north of 

Williston Lake (Figure 3-1), just before it flows into the Peace River, at 56o 15’ north and 

122o 23’ west. The Canadian Cordilleran region is divided into five belts, distinguished 

by their different histories of uplift and subsidence allied with different geological 

structures (Canada Soil Survey Committee, 1977).  The Rocky Mountains lie along the 

Foreland belt, which comprises the eastern mountain ranges and foothills of the Canadian 

Cordillera and are composed of imbricated and folded miogeoclinical and clastic wedge 

assemblages deposited on and adjacent to the stable craton of Ancestral North America 

(Gabrielse, 1991).   

The area under investigation is 497 km2, with a topographical relief of 1230 m 

(675 to 1909 m).  Much of the bedrock is made up of layered Jurassic and Cretaceous 

sedimentary rock.  The eastern side of the study area is composed of mudstone, siltstone 

and shale.  The geology of the west and the center parts have not been mapped in detail 

are classified as undivided sedimentary rock and coarse clastic sedimentary rock.  A 

major thrust fault, north-westward in direction, traverses the eastern side of the study area. 
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Figure 3-1.  Map of Chetwynd study area. 
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The following information is obtained from Jukes and Andrew (2001).  The study 

area is administered by the Forest District of Dawson Creek in the Prince George Forest 

Region.  The nearest community is Hudson’s Hope, a District Municipality, located 

approximately 10 miles, south-east of the study area.  This area is one of the five blocks 

leased under Tree Farm License (TFL 48, also known as Chetwynd TFL) to Canadian 

Forest Products Ltd (Canfor) for tree farming.  The Boreal White and Boreal Spruce 

communities are the dominant biogeo-climate in the region and the principal commercial 

species are White Spruce and Aspen.  

The daily mean temperature of the region varies between -9oC in December to 

15.3oC in July (Environment Canada, 2004).  The mean annual rainfall is 318 mm and the 

mean annual snowfall is about 170 cm in the region (Environment Canada, 2004).  

Landslides in the region are believed to be triggered by the increase in soil moisture 

following snowmelt or high intensity rainfall that results in soil saturation. 

TRIM (Terrain Resource Information Management) DEM data for the project 

area were obtained from the Chetwynd Division of Canfor.  These data are produced and 

sold by Base Mapping and Geomatic Services of MSRM (Ministry of Sustainable 

Resource Management), B.C.  Data were digitally compiled from 1:60,000 scale 

photographs at an accuracy appropriate for a 20 m contour interval map (i.e spot 

elevation accuracies of plus or minus 5 m).  The data were interpolated to a 15 m grid 

DEM from the raw irregularly spaced elevation points using a triangulated network 

interpolation method. The DEM created from the contour interval map with an accuracy 

of ±5 m is not ideally suited for modeling shallow landslides whose average depth is 

approximately 2m, because they may be triggered in terrain features to small to be 
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resolved by the DEM.  Nevertheless, this was the best data available, and we assume that 

it is sufficient for our model comparison purposes.   

Landslides were inventoried by Pack from 1994, 1:15,000 scale black and white 

photographs.  Landslides associated with talus were disregarded in this inventory.  This 

left a reminder of 696 landslides within the Tree Farm License boundary of Canfor. Of 

these 611 were categorized as “debris slides.”  In this data “debris slides” that comprise 

the majority of the landslides are shallow translatory landslides composed of mixture of 

coarse and fine grained soils.   

The term “shallow” in shallow-landslide, is relative and in a general sense refers 

to translational landslides with a maximum depth up to 2 m.  Landslides in the Chetwynd 

study region were reported (Pack, personal communication, 2004) to be less than 2 m in 

depth and can thus be classified as shallow landslides.   

The landslides were also divided into three size classes: 

a) Small: less than 15 m wide by less than 75 m long. 

b) Medium: between the small and large size. 

c) Large: wider than 30 m or longer than 75 m. 

According to this classification, 397 landslides are “small,” 230 are “medium,” 

and 69 are “large.”   

Manual methods were employed to digitize the landslides located on the aerial 

photographs as orthophotos were not available for this area at the time of study.  The, 

landslide locations were carefully plotted using TRIM contour form from the 1:20000 

TRIM map sheets as a guide.  At the time of transfer, it was noted that the TRIM data 
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frequently failed to detect small but critical gully walls or terrace faces where landslides 

commonly originate. 
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CHAPTER 4 

METHODOLOGY 

This chapter develops the discriminatory measure Q that quantifies the 

effectiveness of a terrain stability map to efficiently discriminate between stable and 

unstable terrain when compared to locations where landslides were observed.  Where a 

terrain stability map is based on a model with adjustable parameters, the measure serves 

as a goodness of fit measure that may be used to optimize the calibration of parameters.  

Recognizing equifinality (Beven and Binley, 1992) and the non-uniqueness of parameters 

that result in equal model performance, this measure is also used to define behavioral 

parameter sets that are equally likely simulators of the physical system.  

The Q measure is developed both to compare parameter sets for a single model 

and to compare differences between models that may use different indices to quantify 

stability.   

The assumption that underlies this methodology is that the spatial propensity for 

landsliding is related to variables that quantify the topographic setting relevant to 

landslide potential and that future landslides are more probable in topographic settings 

similar to where past landslides have been observed.  Terrain stability mapping involves 

assessment of the propensity for landsliding based upon observations of landslide 

occurrence in similar topographic locations.   
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A Measure to Quantify the Discriminating  
Capability of a Terrain Stability Map 
 

Some notation is needed to develop the measure of discriminating capability.  Let 

x be an index that is predictive of slope stability.  At its simplest, x could be the slope 

(the higher the slope, the lower the stability). In other cases x could be the stability index 

SI from SINMAP, or the critical destabilizing rainfall obtained from SHALSTAB, or the 

return period of critical rainfall with dynamic wetness, effectively accounting for the 

partial contributing area as developed by Borga, Fontana, and Cazorzi (2002).  x is 

calculated at each point to provide a map of terrain stability  The goal is to quantify the 

predictive capability of the complete map of x, given observations of landslide initiation 

locations.  In general, the map of index x will also depend on the specific parameters of 

the model and can be represented as x(τ, β), where τ is a vector of terrain variables, 

specifically slope, θ, and specific catchment area, a, and β is a vector of model 

parameters.  Model parameters consist of cohesion, C, friction angle, φ and also, in the 

case of SINMAP, the ratio of transmissivity to steady state recharge T/R.  SINMAP takes 

as input upper and lower (max and min) bounds for these variables (Table 4-1).   

Table 4-1. Terrain variables and model parameters for the models compared 

Model Terrain variables, τ Model parameters, β 

SINMAP θ, a Cmin, Cmax, T/Rmin, T/Rmax,  
φmin, φmax 

SHALSTAB θ, a C, φ 

Slope θ - 
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The goal is to define a measure that quantifies the capability of a map of x to discriminate 

unstable regions with respect to the observations of landslides.  We require that x be 

monotonic, that is, greater or lesser x is predictive of greater or lesser likelihood of 

landslide initiation.  Without loss of generality, we assume that decreasing x is predictive 

of more landslides (in the opposite increasing case, a measure –x or 1/x can be used to 

transform to the decreasing case).  Both SHALSTAB and SINMAP quantify terrain 

instability with measures that decrease as terrain becomes unstable.  In the case of 

SHALSTAB, x is R/T, and in the case of SINMAP, x is the stability index SI based on 

the probability of stability and factor of safety. 

Conceptually, we want x values to be low at locations where landslides are 

observed to initiate, and high at other locations.  If this is the case, then x has the 

capability to discriminate landslide locations.  We will define a measure Q that quantifies 

this concept.  The data used in this analysis include: 

a) A grid map where the index x has been computed for each grid cell in the given 

domain. 

b) A set of points within the domain where landslide initiations have been 

observed.  Each landslide point falls within one particular grid cell in the domain, 

and is associated with the stability index for that grid cell. 

If x is a good measure for discriminating terrain instability, we might have all the 

landslides occur in a small fraction, f, of the terrain for which x < xT, where, xT is some 

threshold value in x.  Another measure that has all landslides occur in even a smaller 

fraction (< f) of the terrain is, in a discriminatory sense, better.  We do not, however, 

expect our models to ever be perfect because they are descriptors of topographic settings 
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that quantify a probability for landslide occurrence and in any one survey only a fraction 

of high landslide probability locations will have actual occurrences.  The fraction of the 

landslides FO that occur within a fraction of the terrain FR for a specific threshold value of 

x denoted xT, quantify the discriminating capability of the index x at threshold xT. 

For example, lets consider two models A and B, which have for some threshold 

value xT, 50% of the landslides occurring in 20% and 50% of the terrain, respectively 

(Figure 4-1a).  Comparatively, Model A, when compared with the observed landslide 

fraction, has smaller fraction of the terrain categorized as unstable and hence, is a better 

discriminator.  Another way of looking at the same trend is, for a model to have a higher 

fraction of the landslides for the same fraction of the terrain (Figure 4-1b).  In both cases, 

Model A is performing better than Model B. It should be noted that in such a comparison, 

the stability index x and the threshold value, xT can be different for these two models. 
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Figure 4-1. Example of FO versus FR . a) Model A and B discriminate the same fraction 
of landslides FO, but in model A this occurs in a smaller fraction of terrain 
FR.  b) Model A and B discriminate the same fraction of terrain FR, but the 
terrain discriminated by A contain a higher fraction of landslides FO. 
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To demonstrate the nature of Figure 4-1, let us consider an example of a simple 

index of stability that has a value of either 1 or 0 with 0 indicating instability.  In a more 

general case the stability measure can assume continuous values.  Figure 4-2 shows two 

such predictions, (a) and (b), where red squares shows the observed landslide area, zeros 

on red squares depicts that the model has correctly predicted the landslide and ones on 

red region the incorrect predictions.  Zero on a green area depicts a location where the 

model predicted instability but a landslide was not observed and one on green are the 

areas predicted by the model as stable and there were no landslides observed. 

The two sets R and O are defined as 

O={xi}, a set of x values for the observed landslides.  This contains all the values 

in the red region.  i.e. OA={0,0} and OB={0,1} 

R={xj}, a set of x values for the points representative of the terrain.  For this 

example R includes all the points in the region shown in the Figure 4-2,  i.e. RA= RB= 

{0,0,1,1,1,1,1,1,1,1}. 

 

 
Figure 4-2. Example demonstrating the fractions FO and FR. 

 



 
 37

It can be seen that the prediction shown by model A (Figure 4-2(a)) is better as it 

is correctly predicting all the landslides.  The basis for defining the measure Q is to 

represent this effect in a general way independent of specific xT threshold values. 

Define the ratios FO and FR for this set.  For model A,  

 

0.2
10
2

settheinonesandzerosofNumber
settheinzerosofNumberFR ===

 (4.1) 

1
2
2

settheinonesandzerosofNumber
OsettheinzerosofNumberFO ===  (4.2) 

 

Similarly, for model B, FR = 0.2 and FO = 0.5.  Figure 4-1 b was actually the 

graphical representation of this example and shows the better performance of Model A at 

discriminating landslide locations.  

For a continuous stability index x, FO and FR depend upon a threshold value of x.  

The functions, FO(x) and FR(x) are cumulative probability distribution functions for 

points selected at random from the observed landslide locations and anywhere on the 

terrain respectively.  For a particular threshold xT, if FO (xT) is large for FR(xT) small, the 

model is a good discriminator.  This cumulative distribution comparison is a non-

parametric approach that is independent of x, because one can compare different indices 

at the same value of FO or FR notwithstanding that underlying x values may be different 

between indices. 

Another way to quantify the discriminating capability of index x is in terms of 

landslide density.  If there are a total of N landslides in an area A and fraction FO of them 
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is contained in a fraction of the area FR demarkated by a threshold xT, then the landslides 

density associated with that threshold is 

 

( )
( )AxF

NxF
)x(

TR

TO
TLS =ρ  (4.3) 

 

In general, as xT increases and more area is discriminated we should expect 

landslides density to decrease.  A model that has a higher landslide density for the same 

fraction of the terrain demarcated (i.e. the demarcated terrain contains more of the 

observed landslides) is better.  Equivalently a model that has higher landslide density for 

the same fraction of landslides contained in the terrain demarcated (i.e. the demarcated 

terrain containing these observed landslides is smaller) is better because it has been more 

efficient in discriminating unstable terrain. 

Landslide density can also be used to estimate spatial probability in a time period 

consistent with the time period for which landslides were observed.  This requires an 

estimate of the size (spatial extent) of landslide initiation area.  The spatial probability of 

landslide occurrence associated with the threshold xT is (ρLS(xT).y), where y is the area of 

the landslide initiation zone.  This spatial probability represents the probability that a 

location with index value less than or equal to xT will be a landslide origination point in 

time period consistent with the period over which landslides were observed under the 

assumption that the probability of landslides is equal for points with equal x.  There is a 

danger that if landslides are mapped as points, the analysis could be done at a scale 

smaller than y and the analysis could result in densities large enough so that spatial 
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probability can be greater than 1.  This would be symptomatic of the scale of the analysis 

being reduced beyond what is physically reasonable. 

The basis for defining the measure Q is to represent the integral discriminatory 

ability over a range of xT threshold values so that a measure independent of specific xT 

threshold values is obtained.  In the example given earlier, the (FO,FR) pairs corresponded 

to a specific threshold value of each model.  If more such pairs are plotted for different 

threshold values, the plot may look like Figure 4-3. In this example, because for each 

particular FR(x) the fraction of observed landslides FO(x) from model A is greater than 

model B, model A is a better discriminator. 

In general, models may behave differently at different thresholds, i.e. Model B 

may perform better than A for some threshold values (Figure 4-4).  In such cases, we 
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Figure 4-3. Comparison over different thresholds. 
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cannot readily say which model is performing better by merely looking at the plots.  We 

are interested in which model performs best in an aggregate sense for range of x values.  

We therefore suggest that the integral under this graph be used as a goodness of fit 

measure to quantify the discriminatory power of a map of x.  Our measure is defined as 
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Figure 4-4. The graph of FO(x) and FR(x) for two models A and B. 
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The Numerical Evaluation of Q 

The numerical evaluation of Q will be performed using two data sets: 

a) Observed landslide points.  The set of stability indices xj evaluated at each 

observed landslide location point with j = 1 … n, where n is the number of observed 

landslide initiation points 

b)  Representative terrain points. The set of stability indices xi with i = 1 …m, 

where m is the number of representative points from the domain, either sampled at 

random, or the entire domain (if computationally feasible, i.e. for small domain). 

The subscripts i and j will be used to distinguish representative terrain points and 

observed landslide points.  It is important to note that xi and xj are evaluated for one 

specific parameter set or combination of model parameters.  The Q value so computed 

reflects the predictive capability of the model and specific parameter set. Q thus becomes 

a goodness of fit measure for the model and may be used for parameter estimation.  More 

than one set may have the same Q value, implying non-uniqueness or equifinality in the 

model. 

FO(x) and FR(x) are evaluated numerically from the sets {xi} and {xj}, as follows, 

a) Rank the data xi and xj from smallest to largest, such that we have the 

representative terrain points, xi: x1 < x2 < … < xm and the observed land slide 

points set:  xj: x1 < x2 < … < xn. 

b) Pick the smallest number of m or n.  Most commonly this will be n.  If the 

smallest number is n, then the empirical cumulative probability is estimated using 
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a plotting position, FO(xj)=j/(n+1).  Each value of FO(xj) gives a fraction of 

observed landslides for a threshold value of xj. 

c) Once FO(x) is defined, the next step is to compute the probability distribution 

function FR(x).  This is done for each observed landslide point xj, by interpolating 

between the plotting position estimates of FR(xi) as follows: 

(a) For each observed landslide point xj, find the subscript value i in the 

ranked list of representative terrain points xi such that, xi < xj ≤ xi+1.  

(b) Interpolate f = (xj-xi)/(xi+1-xi).  In other words, f gives the position of xj 

between xi and xi+1.   

(c) Define, ir=i+f with the following exceptions: 

If xj ≤ all xi, set ir=1; i.e. the xj being the lowest of all xi will occupy the first rank.  

If xj > all xi, set ir=m; i.e. the xj being the highest of all xi will be ranked last.  

Here, ir gives the interpolated position of xj in the xi set. 

(d)  Estimate FR(xj) is as, 

 

1)(m
ir)(xF jR +

=  (4.5) 

 

FR(xj) gives the fraction of terrain points that are predicted to be unstable 

by the model for a threshold value of xj.   

Once FO(xj) and FR(xj) are determined, the area under the plot of FO(xj) versus 

FR(xj), Q is calculated by recognizing that y axis values FO(xj) are evenly distributed with 
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spacing 
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1 between points.  The trapezoidal rule approximation of the integral in (5) 

is therefore 
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This sum has extended the integral to the end points (0,0) and (1,1).  In the rare 

case in the above procedure when the smallest number is m, rather than n, FR and FO 

switch places along with their corresponding variables and the value of Q is calculated 

from. 
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Q as estimated above provides a measure of the predictive capability of the 

model. 

GLUE Methodology Adaptation  

Figure 4-5 gives a flowchart of the procedure that was followed.  Ranges for the 

model parameters that define a feasible parameter space are input (Figure 4-5) to the 

Monte-Carlo simulation.  The Monte-Carlo simulation then generates a large number of 

parameter sets, βk from the feasible parameter space.  The number of sets, k, to be 

generated is also input. 
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The parameters of SHALSTAB are the dimensionless cohesion, C and the friction 

angle, φ, i.e βk = (C, φ).  The inputs to SINMAP are specified as ranges and hence the 

upper and lower bounds of user input variables T/R, φ and C serve as the parameter set 

for the model, i.e βk = (Cmin, Cmax, φmin, φmax, T/Rmin, T/Rmax). Minimum and maximum 

values T/R, φ and C will be generated, with the condition that Cmax>Cmin, φmax>φmin and 

T/Rmax>T/Rmin.  Recognizing that SINMAP parameters already quantify uncertainty in 

terms of uniform distributions, this procedure to quantify the uncertainty in distribution 

bounds is a second order quantification of the uncertainty. 

The terrain stability model (SHALSTAB or SINMAP) is evaluated for each of the 

above parameter sets (i.e k times) at each observed landslide initiation point, (θ, a)i  and 

at each terrain point quantified by slope and specific catchment area, (θ, a)j.  i ranges 

from 1 to m, the number of observed landslides, and, j ranges from 1 to n, the number of 

terrain points sampled.  Terrain is sampled to reduce the computational burden.  

Wherever it is feasible the entire terrain should be considered.  In this case, m is equal to 

the total number of terrain points. 

Following model evaluation, stability index sets xi and xj for each of the 

parameter sets βk are obtained.  The objective function, Q is computed for each parameter 

set and parameter sets are ranked according to the Q value.  Here Q is used as a goodness 

of fit, or likelihood measure in the GLUE procedure to determine the parameter sets for 

which the model is a good discriminator, or in a relative sense a better discriminator than 

other models or parameter sets. 
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On completion of the procedure, lists of Q, one for each model are obtained.  

Those parameter sets with Q close to the maximum Q obtained (say all parameter sets 

where Q is within 5% of its maximum value) are termed behavioral and can be used to 

quantify the uncertainty associated with model predictions.  The differences (in terms of 

discriminatory power) between different models are assessed in terms of the maximum Q 

value from each model. 

In following this procedure the assumption is that the sampling has been sufficient 

to cover the parameter space, recognizing the curse of dimensionality as the number of 

parameters increase.  We assess sufficiency of the number of parameter sets generated by 

checking stability of the maximum Q and uncertainty bounds to repeats of the procedure. 

The behavioral and the non-behavioral parameter sets from the GLUE 

methodology can also be used that assess the relative sensitivity of the parameter on the 

stability index.  If a parameter is sensitive, then its probability distribution in the 

behavioral set should be different from that of the non-behavioral set.  This Generalized 

Sensitivity Analysis (GSA; Spear and Hornberger, 1980) is useful for evaluating the 

sensitivity of multi parameter models and can easily be combined with GLUE 

methodology. 

To assess the statistical significance of the models with different Q, we use a Chi-

square test.  This test evaluates the difference between the fractions of the observed 

landslides captured at a stability index threshold corresponding to a specific fraction of 

the terrain mapped as unstable by each model.  For a fraction of terrain FR(xT) mapped as 

unstable by each model, terrain stability models may have a different proportion of   
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Figure 4-5. Flow structure of the GLUE methodology. 

 

landslides contained within the unstable terrain, FR(xT).  xT will generally be different for 

different models. 

The chi-square statistic measures the discrepancy/difference between the observed 

and the expected frequencies of a random variable being tested.  In our case, we are 

trying to check for the differences between the numbers of landslides observed in a 

region mapped as unstable by two different models.  We assume as a null hypothesis the 

number provided by one of the models and evaluate whether the number obtained from 

the other model is significantly different, or could be obtained by chance. 
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We compare two models and select a threshold for each such that the fraction of 

terrain FR mapped as unstable by each model is the same.  We then have 

e1 = number of observed landslides in the reference model’s unstable area 

e2 = number of observed landslides in the reference model’s stable area 

o1 = number of observed landslides in the other model’s unstable area 

o2 = number of observed landslides in the other model’s stable area, 

Then the chi-square statistic is given by 

( ) ( )
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22
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2
112

e
eo

e
eo −

+
−

=χ  (4.8) 

such that  

∑ ∑ == Neo jj  (4.9) 

where 

N = Total number of landslides 

 

χ2
 can be checked for the level of significance using the standard χ2

 distribution. 

A split sample test was used to evaluate the effectiveness of optimized model 

parameters from the GLUE methodology in comparison to data not used in the parameter 

estimation.  The study area was divided into two regions and parameters were optimized 

using the data set from one region through the GLUE procedure.  The optimized 

parameters were then used to develop stability index maps for the other region.  The 

performance of these stability maps in the other region was quantified using the Q 

measure. 
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CHAPTER 5 

DATA ANALYSIS AND RESULTS 

Terrain stability maps (Figure 5-1) that predict landslide occurrence were created 

for the study area using SINMAP and SHALSTAB, with their default parameter values 

(Table 5-1).  Though most of the steeper region (see hillshading in Figure 3-1 and 

contours on the expanded portions of Figure 5-1) is predicted to be unstable by both the 

models, the models differ in how they categorize the areas of moderate to gentle slope.  

To illustrate this difference between SHALSTAB and SINMAP in differentiating stable 

zones from unstable ones, Figure 5-1 shows expanded detail for a small portion of the 

study area where the red regions are more unstable than the green.  Both of these models 

use a continuous stability index scale to characterize the degree of instability.  Thresholds 

within this continuous scale may be used to classify the domain into zones with different 

stability categories (Dietrich et al., 1998; Pack, Tarboton, and Goodwin, 1998) as has 

effectively occurred in Figure 5-1 with the selection of color schemes for depicting the 

continuous stability index surface. 

SHALSTAB uses the ratio R/T as the index to classify stability classes.  

Following Dietrich et al. (1998) and Dietrich, Bellugi, and de Asua (2001), a log (base 10) 

transformation of R/T was used to facilitate interpretation.  This results in negative 

log(R/T) values instead of the very small actual R/T values.  As an example of the 

categorization of the stability indices mapped in Figure 5-1, a threshold of log(R/T) equal 

to –2.8 is used for SHALSTAB (red and its darker shades) to map unstable terrain.  The  
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Figure 5-1. Terrain stability maps using SHALSTAB and SINMAP. 
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threshold of -2.8 was chosen for illustration because it has been used by Dietrich, Bellugi, 

and de Asua (2001) as a terrain stability threshold. SINMAP uses a stability index of one 

as a threshold (red and its darker shades) to map unstable terrain.  The threshold of one in 

SINMAP delineates terrain where there is a finite probability of it being unstable 

according to the model.  

Figure 5-1 also depicts the observed landslide locations.  Within the expanded 

area SHALSTAB captures four of the ten observed landslides under its unstable category 

(log(R/T) less than -2.8) while SINMAP captures six of the observed landslides within its 

unstable category (SI less than 1) but categorizes more area as unstable.  In an ideal case, 

each of the models should have identified all the landslides under their respective 

unstable categories which should only cover a small fraction of the domain.  Note that the 

models cannot be easily compared because they have different thresholds categorizing 

stability zones and different unstable area size. 

 

Table 5-1. Default parameter values for SHALSTAB1 and SINMAP2 

Model Parameters Default values 
C 0.0 SHALSTAB 
Φ (degree) 450 
T/Rmax[m] 3000 
T/Rmin[m] 2000 
Cmax 0.25 
Cmin 0.0 
Φmax (degree) 450 

SINMAP 

Φmin (degree) 300 
1. From Montgomery and Dietrich, 1994 
2. Pack et al., 1998 
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For the whole region, SHALSTAB maps about 8% of the area as unstable with a 

threshold of –2.8.  This area contains 395 observed landslides (57% of the landslides).  A 

threshold of –2.5 contains 433 observed landslides (62% of the landslides) and 9% of the 

terrain.  SINMAP, with a threshold stability index value equal to 1 maps a larger region, 

11.5%, of the total area as unstable.  This area contains 507 (73%) observed landslides. 

If an inexperienced person has to choose between SHALSTAB and SINMAP, 

given the above knowledge and the region, he or she may choose SINMAP because the 

mapped unstable area contains more observed landslides.  However, this does not 

consider the fact that SINMAP in identifying more landslides has categorized a larger 

area as unstable.  In other words, he or she may still have not chosen the best model, 

because the information given is not sufficient to differentiate models based on their 

performance. 

There is some subjectivity involved in choosing thresholds.  Dietrich et al. (1998), 

use a threshold of -3.1 to categorize areas as high hazard zones in their studies conducted 

in California Coastal Ranges of coastal Mendocino and Humboldt counties.  A threshold 

of -2.5 was not supported by Dietrich et al. (1998) as it was only as good as the random 

model used as a point of reference (see section 2.4).  In SINMAP, a SI threshold of 1 is 

consistent with the idea of mapped locations having a finite (greater than 0) probability of 

instability.  A threshold of 0.5 is consistent with mapped locations having a higher than 

50% probability of instability.  These probabilities are taken over the uniform 

distributions for the parameters.  The point is that these models have different 

discriminating powers at different thresholds and hence the above example does not have 

sufficient information to select a better model. 
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Landslide Density 

One way to interpret terrain stability maps is through estimates of landslide 

density.  Landslide density is a common quantity used in landslide hazard mapping, 

expressed as number of landslides per unit area.  We can associate a landslide density 

given by Equation 4.3 with each value of x for each model. 

The landslide density, ρLS(x), quantifies in a non-parametric way the number of 

landslides per unit area in the area associated with stability index values less than x.  

Computing the landslide densities for SHALSTAB and SINMAP, using the thresholds 

mentioned in the above paragraph, the ρLS(-2.8) is equal to 9.9 LS/km2* for SHALSTAB 

and ρLS(1) is 9.3 LS/km2 for SINMAP.  This might be interpreted to show SHALSTAB 

to be performing better than SINMAP, because it achieves a higher landslide density, so 

is more discriminating.  This comparison however is only good when both the models are 

capturing the same number of landslides or apply to the same fraction of the terrain.  As 

mentioned earlier, SHALSTAB captures relatively fewer landslides (395) compared to 

SINMAP (507) and hence we cannot really say that SHALSTAB is performing better 

than SINMAP from this information. 

Dietrich et al. (1998) use the plot of landslide density versus the stability index. 

log(R/T), to demonstrate the better performance of SHALSTAB over a random model 

(see section 2.4 for the definition of random model).  Such a comparison was possible 

because the random model used by Dietrich et al., (1998) has the same stability index, 

                                                 
* Landslides per square kilometer. 
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log(R/T).  A plot of landslide density versus x is informative for a particular model, but 

not amenable to comparing different models. 

Figure 5-2 shows the landslide density plots for a) SHALSTAB and b) SINMAP.  

In a landslide density versus threshold plot, undulations occur where, due to sampling 

effects, a small change in threshold captures a large increment of landslides, for only a 

small increase in area.  The curve reflects the behavior of the Equation 5.1(equation is 

introduced below), which can increase or decrease depending on the fraction of 

landslides identified, and the fraction of the total area mapped as unstable. 

The cumulative distribution curves FO(x) and FR(x) for default parameter values 

are plotted on the landslide density graph to illustrate the role of thresholds.  From this 

plot, one can determine the fraction of landslides and the fraction of the entire terrain 

associated with any threshold.  Then the threshold value that best discriminates the 

unstable region is the one that gives the maximum difference between the landslide and 

the area cumulative curves.  In other words, if one is using a specific parameter set to 

map stable and unstable zones using just one threshold, then the best discrimination is 

obtained by using the threshold that gives the maximum difference between the 

cumulative distributions of FO(x) and FR(x).  The knowledge of the threshold with 

maximum discrimination is helpful in setting up bounds for the unstable category in the 

terrain stability map. 
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Figure 5-2. Landslide density plots for (a) SHALSTAB and (b) SINMAP. 
 

SHALSTAB with its default parameter set can for this region identify at most 

64% of the landslides in 9% of the area corresponding to a threshold of 2.2− .  Larger 

values of this threshold categorize more area as unstable but never capture any more 

observed landslides because 36% of the landslides are at unconditionally stable locations 

according to SHALSTAB with its default parameters (C=0, Φ=45o).  Similarly, SINMAP 

can contain approximately 92% of the observed landslides at a threshold of 1.25, with 
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20% of the total area mapped as unstable.  This suggests a better performance of 

SINMAP in identifying landslides (when default parameter sets are used). 

For cohesionless soil, SHALSTAB simplifies the infinite-slope stability model 

(Equation 2.8) and expresses it using the following equation. 
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 (5.1) 

 

SHALSTAB equates the FS to one, and evaluates the critical rainfall (Rcr) from 

Equation 2.9.  Setting FS equal to one, one can write Equation 5.1 as 

 

φ−=θ tan]wr1[tan  (5.2) 

 

The above equation suggests that, if φ−≤θ tan]wr1[tan , the slope is stable.  

Further w can not exceed saturation represented by w=1, so the condition for the 

unconditional stability is φ−≤θ tan]r1[tan .  For default parameter values of 

SHALSTAB (C=0, Φ=45o), slopes less than 26.6o are unconditionally stable.  There are 

245(~36%) observed landslides in the dataset that occur on slopes less than this value and 

hence SHALSTAB is not able to contain them within the unstable region with the default 

parameter set.  If cohesion is included, without altering the friction angle, this number 

will be higher, because cohesion increases stability and the slope angle required to cause 

instability will be increased. 
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Spatial Landslide Probability 

One goal of terrain stability mapping is to produce a spatial probability map of 

landslide hazard in the study area. The landslide density discussed above can be related to 

a spatial probability of landsliding within a time period associated with the occurrences 

of the observed landslides as was discussed in Chapter 4. 

For the Chetwynd study area, the size of each landslide is taken as a single DEM 

grid cell, equal to 225m2(15m x 15m pixel), and we have 696 observed landslides in 

497km2.  From this, the spatial probability for the whole region would be equal to 

0.00032.  The size of the entire landslide scar can be bigger than 225m2, but we are 

considering only the landslide initiation which is here assumed to correspond to one grid 

cell.  Landslide density can be assigned to each grid cell and hence we can compute the 

spatial probability for each grid cell.  Such a procedure gives the spatial probability maps 

that could assist in land management.  Figure 5-3 is the same as Figure 5-2, but one of the 

y-axes has been changed to the spatial probability, to show the conversion between 

landslide density and spatial probability. 

Figure 5-4 depicts the spatial probability maps for a) SHALSTAB and b) 

SINMAP, created using the conversion from the Figure 5-3.  These maps were created 

for default values of the parameters (Table 5-2).  The expanded region shown is the same 

as the one shown in Figure 5-1.  The color shading on a spatial probability map is 

essentially the ratio of the number of landslides that occurred in terrain with the same or 

more unstable stability index, relative to the number of grid cells in the area with the 

same or more unstable stability index.  As such, a value, for example, of 0.005 might 



 
 57

represent that 20 landslides occurred in an area comprising 40000 grid cells (9 km2).  The 

probability of a landslide occurring in any one of these grid cells during the time interval 

when the observed landslides were recorded is 20/40000 = 0.005.  The majority of areas 

 

 

Figure 5-3. Spatial probability plots as a function of stability index threshold for (a) 
SHALSTAB and (b) SINMAP with default parameter sets. 
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marked with high probability of landslides are in the region of steeper slopes showing the 

topographic influence on landslides.   

Spatial probability maps are results of integration over all thresholds and could be 

a possible way of comparing terrain stability models.  A spatial probability map also 

overcomes the difficulty of comparing models with different indices.  Another way to 

integrate over all thresholds is to use the FO versus FR plot for a visual depiction and the 

integrated measure representing the area under the plot (Equation 4.4) to quantify the 

discriminatory power of the stability indices.  Figure (5-5) shows such a plot for 

SHALSTAB and SINMAP for their default parameters.  The Q value for SINMAP equal 

to 0.909 is greater than that of SHALSTAB which is equal to 0.775, suggesting that for 

their respective default values, SINMAP performs better than SHALSTAB.  A random 

model where landslides occur at locations independent of the stability index would result 

in a Q value of 0.5 corresponding to a 1:1 line. 

To understand if slope and specific catchment area could be used as an index, 

their FO versus FR was also plotted.  The Q value of slope and specific catchment area are 

0.905 and 0.48 respectively.  This illustrates the strong influence of slope on landslides in 

this study area.  In fact, slope by itself is almost as good as the other two models used in 

this study.  A Q statistic of specific catchment area close to 0.5 indicates the poor 

performance of the specific catchment area by itself to identify landslides locations.  The 

statistical significance of the difference between values of 0.909, 0.775 and 0.905 for 

SINMAP, SHALSTAB and slope will be evaluated later.  The Q statistic is capturing the 

inability of SHALSTAB to identify all the landslides.  As discussed earlier, SHALSTAB  
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Figure 5-4. Spatial probability maps a) SHALSTAB b) SINMAP for their default parameters. 
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with the default parameter values was able to identify only 64% of the landslides.  The 

low value for SHALSTAB is because the model is non-discriminating over the 91% of 

the terrain that is mapped as unconditionally stable, but still contains 36% of the 

landslides.  Close examination of the curves (Figure 5-5) at the left indicate that 

SHALSTAB is less discriminating than slope initially, but as FR = 0.09 is approached, is 

more discriminating than slope. 

The actual numerical difference between SINMAP (Q=0.9099) and slope 

(0.9054) is very small (0.0045) but there is a visually distinguishable difference between 

the plots of SINMAP and slope in the steeper region of the terrain (Figure 5-5). 
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Figure 5-5. FO(x) versus FR(x) plot for different stability indicies. 
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Implementation of GLUE Methodology 

FO versus FR plots; spatial probability maps and the Q statistic that integrate under 

the FO versus FR curve provide ways to objectively assess the discriminating capability of 

terrain stability indices.  However, the terrain stability index maps produced by models, 

such as SHALSTAB and SINMAP depend on the input model parameters.  Objective 

comparison therefore requires that the parameters be optimized.  The modified GLUE 

random search methodology described in the previous chapter was used to find parameter 

sets that give the best discriminatory performance as measured by the Q statistic.  These 

optimized parameter sets were used to compare the performance of different models. 

According to the basic premises of GLUE, there could be more than one 

parameter set for which models may behave equally well in simulating the physical 

system (Equifinality).  Such sets are termed as behavioral sets of the model.  Here, we 

use modified GLUE methodology to generate behavioral sets of parameters to be used for 

the comparison of models. 

Ten thousand sets of parameters were generated for each model using Monte 

Carlo simulations.  Monte Carlo simulations take parameter ranges as input.  Parameters 

are assumed to be uniformly distributed within their range which represents the initial 

uncertainty associated with each parameter.  The GLUE procedure is intended to reduce 

parameter uncertainty; therefore we set the initial upper and lower parameter bounds 

fairly wide.  Table 5-2 gives initial upper and lower limits of the parameters. 

For computational purposes, representative terrain points were used instead of 

using the entire terrain.  Representative terrain points are required, because we are 
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comparing the distribution of stability indices at the observed landslide locations with the 

terrain points to quantify the discriminatory power of the model.  5000 terrain points 

were sampled to obtain the set of representative terrain points.  We performed repeat tests 

to verify that results were not sensitive to this terrain point sampling.  For a single 

parameter set, when the terrain points used were increased to comprise the entire domain 

(all the terrain points), for SINMAP, the value of Q increased from 0.9143 (with 5000 

terrain points) to 0.9158.  This results in classifying 0.75 km2 more area as stable when 

using a threshold that captures 95% of the landslides.  A similar change of 0.36 km2 was 

obtained with SHALSTAB.  These differences are insignificant, relative to the 497 km2 

study area, so we concluded that the simplification involved in using 5000 sampled 

terrain points was justified.  This expedited the analysis considerably because evaluating 

10,000 simulations for the entire terrain is computationally burdensome. 

For each parameter set from the Monte Carlo simulation a Q value was computed 

and parameter sets ranked according to their Q statistic (maximum to minimum).  The 

 

Table 5-2. Input range for Monte Carlo simulation for SHALSTAB 

Model  Lower 
limit 

Upper 
limit 

C 0.0 0.5 SHALSTAB 
Φ[degree] 200 600 
T/Rmax [m] 200 5000 
T/Rmin [m] 200 5000 
Cmax 0.0 0.5 
Cmin 0.0 0.5 
Φmax[degree] 200 600 

SINMAP 

Φmin[degree] 200 600 
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first 5% of the sets are treated as the behavioral set of the parameters (the first 500 sets 

out of 10000 simulated sets).  This results in two sets of behavioral parameters, one for 

each model.  The Q-values from these behavioral sets can be used to compare models.  

The choice of 5% is somewhat subjective.  Freer and Beven (1996) choose a series of 

these thresholds to demonstrate the sensitivity of parameters of TOPMODEL. 

Figure 5-6 and Figure 5-7 give dot plots of the Q value for each of the parameter 

sets simulated for SHALSTAB and SINMAP, respectively.  Each point in these figures is 

a plot of the value of one parameter from one of the 10000 sets versus the Q statistic 

evaluated for that particular parameter set.  These plots are used to interpret the ranges of 

parameter values for which the model is behavioral in the sense of achieving a high Q 

statistic.  Note that the Q statistic is for the combination of the parameters and not for just 

one value of it. 

For SHALSTAB, we see that behavioral parameter sets are obtained for C values 

less than about 0.15 and for Φ values less than about 35º.  Within these ranges there are 

combinations of C and Φ that can produce a high value of Q and good performance of the 

model.  The result for SINMAP shows that model behaves consistently well no matter 

what the values of the parameters are.  That is, all the dots tend to accumulate at Q value 

of 0.9.  This is due to SINMAP still having discriminating capability in the conditionally 

stable domain due to the use of FS as SI in this part of the domain.  This nature of 

SINMAP to consistently perform well is explored further in the Appendix.  The sensitive 

range of Q is compressed due to a large part of the domain being flat. 

To understand the parameter space, histograms of the behavioral parameter set 

were created.  Figures 5-8 and 5-9 show the histograms for SHALSTAB and SINMAP 
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respectively.  The histograms reveal the ranges of the model parameters that perform well 

and the absence of bars across the full range represents the reduction in the initial 

parameter uncertainty.  Ideally if the initial ranges are fairly large, the resulting histogram 

of the behavioral set must be somewhere in the middle reducing the uncertainty at both 

ends.  A good example of this is seen in Figure 5-9a.  These histograms also indicate the 

potential for identifying the model parameters.  A histogram with approximately the same 

height of bins across a large range of the parameter implies that the parameter cannot be 

identified/optimized within that range. 

Figure 5-8 indicates that SHALSTAB performs better for lower values of C and 

Φ. There is a significant reduction in initial parameter uncertainty indicated by the 

histograms in Figure 5-8 relative to the initial ranges assumed for these parameters.  

Densities at the lower end of Φ suggest that the lower limit of Φ could be reduced for the 

analysis.  Physically the lower limit of C is zero and hence the range of C cannot be 

further extended at the lower end. 

The histogram plots for SINMAP show that the Φmin has the highest density at its 

lower limit.  So it may be possible that the parameter space for Φ might stretch beyond 

the lower limit.  The same argument can be extended to other parameters of SINMAP, 

whose edges have relatively higher densities.  When extending the parameter ranges, one 

should also consider whether it makes physical sense.  For example, the Φmax’s upper 

limit may also be extended, but an internal friction angle greater than 60 would rarely 

occur in the real world.  T/Rmax and Cmax are other parameters that have some potential 

for stretching their limits.  T/Rmax showed the characteristic of parameter unidentifiability  
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Figure 5-6. Scatter plots of Q goodness of fit measure versus individual SHALSTAB 
model parameters. 

 
 
when upper limit was increased by having an approximately uniform distribution across 

the range.  Nevertheless, from the available literature (Sidle, Pearce, and O'Loughlin, 

1985; Sidle and Wu, 2001; Dietrich, Bellugi, and de Asua 2001; Dietrich et al., 1998), we 

believe the parameters ranges used are fairly large and hence they should not reasonably 

be extended any further. 

Even though there is little basis for Φ values less than 20o, for illustrative 

purposes we performed tests extending the ranges for Φmin and Φmax to be 10-60 degree.  
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The GLUE procedure was repeated with these new ranges for Φ while the ranges of the 

remaining parameters are kept unchanged.  75000 parameter sets were generated from 

Monte Carlo simulation instead of 10000.  SHALSTAB did not show any major changes 

while there was noticeable change in the results of SINMAP.  The scatter plots for 

SINMAP from this run are illustrated in Figure 5-10.  With the extension in Φ parameter 

range, we start to observe the poor performance of SINMAP for some parameter sets.   

 
Figure 5-7. Scatter plots of Q goodness of fit measure versus individual SINMAP model      

parameters. 
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Figure 5-8. Histograms of behavioral parameter set for SHALSTAB. 
 
 

These results show that poor discriminatory performance of SINMAP occurs when the 

range of Φ is allowed to be less than 20o but that for the entire reasonable range of 

parameters SINMAP gives good discriminatory performance. 
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Figure 5-9. Histograms of behavioral parameter set for SINMAP. 

 

Though the above analysis gives insight into the behavior of Q-statistic and 

ranges of behavioral parameters, it tells us very little about the sensitivity of parameters.  

The following section demonstrates the use of modified GLUE procedure to perform 

sensitivity analysis to assess the relative influence of each parameter on the model 

utilizing the cumulative distribution of parameters in behavioral and non-behavioral sets. 
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Figure 5-10. Scatter plots of Q goodness of fit measure versus SINMAP model 

parameters with extended range for Φ. 
 

Sensitivity Analysis 

Although the dot plots give some information of parameter sensitivity, further 

information is obtained by comparing the cumulative distribution of landslides of 

behavioral and non–behavioral parameter sets. 
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The behavioral and non-behavioral sets have 500 and 9500 parameter sets, 

respectively.  The sensitivity of a parameter is quantified in terms of how different the 

parameter cumulative distributions are between behavioral and non-behavioral sets. 

Figure 5-11 shows a marked difference between the behavioral and non-

behavioral distributions (for SHALSTAB).  Similar plots for SINMAP (Figure 5-12), 

suggests that the least sensitive parameters are Cmax and Φmin, and the most sensitive 

parameters are T/Rmin and Cmin. 
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Figure 5-11. Comparison of behavioral and non-behavioral parameter distribution for 

SHALSTAB. 



 
 71

0 1000 2000 3000 4000 5000
0

0.5

1

T/Rmax, m

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

D=0.2

0 1000 2000 3000 4000 5000
0

0.5

1

T/Rmin, m

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

D=0.51

0 0.1 0.2 0.3 0.4
0

0.5

1

Cmax

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

D=0.083

0 0.1 0.2 0.3 0.4
0

0.5

1

Cmin

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

D=0.38

20 30 40 50 60
0

0.5

1

φmax, degree

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

D=0.26

20 30 40 50 60
0

0.5

1

φmin, degree

C
um

ul
at

iv
e 

di
st

rib
ut

io
n

D=0.14

Behavioral
Non-behavioral

 

Figure 5-12. Comparison of behavioral and non-behavioral parameter distribution for                            
SINMAP. 

 

The Kolmogorov-Smirnov test (KS-test) was used to quantify the statistical 

significance of differences between two parameter set distributions.  The KS-statistic (D) 

is the maximum vertical distance between the two distributions.  D varies between 0 and 

1, with higher values signifying greater differences between distributions. 
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The level of significance of D depends on the sample size and the confidence of 

the statistical test result increase with the number of samples.  The sample size in this 

case is the number of parameter sets in the behavioral set, which is equal to 500.  The 

non-behavioral set is considered as an underlying distribution.  For different levels of 

statistical significance (α) the critical values of the test statistic D are given in Table 5-3.  

If the D statistic evaluated in KS-test is greater than the critical value, then the 

distributions are significantly different and hence the parameter is sensitive. 

As is evident from the graphs (Figure 5-12), both the parameters of SHALSTAB 

have D values closer to one, suggesting a very significant difference between 

distributions.  This means that the model is sensitive to both the parameters.  The D 

values of SHALSTAB were significantly greater than the critical values for 99% 

confidence given in Table 5-3.  In the case of SINMAP, the parameters are not as 

sensitive as SHALSTAB’s parameters.  The most sensitive parameter is T/Rmin which has 

D=0.51 and the least sensitive is Cmax which has D=0.08.  Even though numerically 

smaller, these D values are greater than the critical values of the KS-test for 99% 

confidence level suggesting that parameters are sensitive.  Note that Cmax comes very 

close to being insensitive. 

Figure 5-13 and 5-14 explore the interaction between parameters within the 

behavioral parameter sets.  The axes in these figures represent the ranges used in the 

Monte Carlo simulation.  The empty space depicts the reduction in parameter uncertainty 

from the GLUE random search.  For example in Figure 5-13, if we plot all the 10000 

points from the simulation, it would fill the entire box.  After implementation of GLUE 
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methodology, the 500 behavioral parameter sets are seen to cluster in the lower left of the 

domain with C<0.12 and Φ <32o. 
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Figure 5-13. Interactions among behavioral paramters, SHALSTAB. 
 
 

 

Table 5-3. Critical values of the Kolmogorov-Smirnov test 

α 0.1 
(90% confidence) 

0.05 
(95% confidence) 

0.01 
(99% confidence) 

Approximations 
to critical values when 
sample size, n, is 
greater than 40 

n
22.1  

n
36.1  

n
63.1  

When n=500, 0.0546 0.0608 0.0729 

Adapted from (Davis, 1986) 

 



 

0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

T/Rmax

T/
R
m
in

 
a 

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

T/Rmax
C
m
ax

b 

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

T/Rmax

C
m
in

c 

0 1000 2000 3000 4000 5000
20

25

30

35

40

45

50

55

60

T/Rmax

φ
m
ax

d 

0 1000 2000 3000 4000 5000
20

25

30

35

40

45

50

55

60

TRmax

φ
m
in

e 

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

T/Rmin

C
m
ax

 
f 

0 1000 2000 3000 4000 5000
0

0.1

0.2

0.3

0.4

0.5

T/Rmin

C
m
in

 
g 

0 1000 2000 3000 4000 5000
20

25

30

35

40

45

50

55

60

T/Rmin
φ
m
ax

 
h 

0 1000 2000 3000 4000 5000
20

25

30

35

40

45

50

55

60

T/Rmin

φ
m
in

i 
0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Cmax

C
m
in

 
j 

0 0.1 0.2 0.3 0.4 0.5
20

25

30

35

40

45

50

55

60

Cmax

φ
m
ax

 
k 

0 0.1 0.2 0.3 0.4 0.5
20

25

30

35

40

45

50

55

60

Cmax

φ
m
in

 
l 

0 0.1 0.2 0.3 0.4 0.5
20

25

30

35

40

45

50

55

60

Cmin

φ
m
ax

 
m 

0 0.1 0.2 0.3 0.4 0.5
20

25

30

35

40

45

50

55

60

Cmin
φ
m
in

n 
20 30 40 50 60

20

25

30

35

40

45

50

55

60

φmax

φ
m
in

o 
 
Figure 5-14. Interactions among behavioral parameters, SINMAP (Units: T/R (m), Φ(degree)). 74
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The initial Monte-Carlo simulation ranges were large so we generally expect a 

reduction in the parameter range following calibration.  This occurred with SHALSTAB, 

but was not the case with SINMAP.  In Figure 5-14 Φmax and Φmin exhibit no reduction in 

their parameter space, while all other parameters show at least some reduction.  The 

empty spaces in the upper diagonal triangle of the box in Figure 5-14 (a), (j), and, (o) 

should not be confused with the reduction in parameter uncertainty, because they are due 

to the conditions (T/Rmax > T/Rmin, Cmax>Cmin, and Φmax> Φmin) used while generating 

these parameters using Monte-Carlo simulation.  According to these conditions, for a plot 

of Φmax versus Φmin (Figure 5-15 (o)), Monte–Carlo simulation filled up the entire lower 

diagonal triangle with its 10000 points.  The behavioral set (500 points) still spreads 

throughout the lower triangle, suggesting no reduction in parameter space with respect to 

Φmax and Φmin.  On observing carefully, this characteristic can be seen in any of the plots 

involving Φmax or Φmin. 

Model Comparison 

To have an objective model comparison we compare models using the parameter 

set with highest Q value from the modified GLUE random search.  We also examine the 

improvement in model performance over the default parameter values.  Results for 

SHALSTAB and SINMAP are given in Table 5-4.  The optimized parameter sets from 

GLUE random search show an increase in the Q statistic over the default parameter 

values in both the models, but the improvement in SINMAP is small.  This is the result of 

clustering of optimized parameters near 0.9 shown in Figure 5-7.  The plot of FO(x) 

versus FR(x) for the best sets is given Figure 5-15.  Presence of large proportion of flat 
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area in the terrain, where the models are similar in discriminating the stable area, results 

in very small differences in the numerical values of Q between SINMAP and 

SHALSTAB, though there is visually discernable difference in their graphs (Figure 5-

15).  At the end of this section, we evaluate the statistical significance of these 

differences using a chi-square statistical test at selected values of FR. 

The thresholds identifying 50%, 90%, and 95% of the landslides, and the 

corresponding fraction of area categorized as unstable were computed for each of the 

models for the default and the best parameter sets given in Table 5-4.  The effectiveness 

of the GLUE methodology can be observed by comparing the performances of the default 

and the parameter set with highest Q value.  The results are given in Table 5-5 

(SHALSTAB) and 5-6 (SINMAP). 

 
Table 5-4. Best set of the parameter for SINMAP and SHALSTAB with their Q statistic 
Model Parameter Default set Q Parameters 

with the 
highest Q 

value 

Q 

C 0 0.011 SHALSTAB 
Φ (degree) 45 

0.78 
27.6 

0.9 

T/Rmax(1/m) 3000 4926 
T/Rmin(1/m) 2000 2621 
Cmax 0.25 0.23 
Cmin 0.0 0.16 
Φmax(degree) 45 31.5 

SINMAP 

Φmin(degree) 30 

 
 

0.9 

22.1 

 
 

0.91 
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Figure 5-15. FO versus FR plot for the best set parameter set of SHALSTAB and   
SINMAP. 

 

 
Table 5-5. Landslide percent – area percent relation for SHALSTAB 

 Default parameter set Parameters with the highest Q value 

Landslide percentage 
identified 

50 64   50 90    95 

Threshold log10(R/T) -2.95 -2.12 -6.00 - 3.66 -3.33 

Percentage of area 
marked unstable 

7.16 9.04  7.39 20.7 29.24 
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Table 5-6. Landslide percent – area percent relation for SINMAP 
 Default parameter set  Parameters with the highest Q 

value 

Landslide percentage 
identified 

50 90 95 50 90 95 

Threshold SI 0.97 1.2 1.35 0.99 1.34 1.47 

Percentage of area 
marked unstable 

5.95 20.56 27.34 5.95 19.59 24.68

 

From the comparison, the default values of SHALSTAB can at the most only 

identify 64% of the landslides, associating them with 9% of the area.  The remaining 36% 

of the landslides fall in the region classified as always stable according to the model 

(explained earlier).  Compared to this, the best set for SHALSTAB contained 95% 

percent of landslides within 29% of the area, showing an improvement in the model’s 

discriminatory power. 

With SINMAP the difference between the Q statistic for the default and the 

parameter set with the largest Q value (Table 5-6) was only 0.1.  This difference of 0.1 is 

due to calibration that categorizes 2% less area as unstable when identifying 95% of the 

landslides.  Two percent of the area is approximately equal to 10 km2 which could be 

significant in land management as this applies to steeper terrain. 

In comparing SINMAP and SHALSTAB the optimized Q values are very close.  

However the small difference in Q value still results in appreciable differences in the 

percentage of unstable area for identifying 50%, 90%, and 95% of the landslides.  

Furthermore SINMAPS’s default parameter set is better than SHALSTAB with 

optimized parameters in classifying 50%, 90%, and 95% of the landslides. 
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One important question, this study tries to answer is, is it possible for a simple 

variable like slope to categorize unstable regions as efficiently as complex models?  To 

answer this, an analysis using slope and specific catchment area as slope-stability 

thresholds by themselves was performed.  The result of this analysis is provided in Tables 

5-7 and 5-8 for slope and specific catchment area, respectively. 

The specific catchment area by itself shows little discriminatory power and 

categorizes large area as unstable.  This is because specific catchment area may be large 

where the slope is too small to initiate a landslide.  The strong topographical influence is 

evident with slope, which performs better than the calibrated SHALSTAB, in identifying 

95% of the landslides.  Slope has one percent less area classified as unstable while 

identifying 95% of the landslides than SHALSTAB. Similarly, the calibrated SINMAP 

model is only marginally better than the slope. 

The above explanation about the differences between model performances is 

helpful from a land management perspective but does not necessarily say if there is any 

 

Table 5-7. Landslide percent – area percent relation for slope threshold 
Landslide percentage 
identified 

50 90 95 

Slope threshold  0.55(29o) 0.37(20o) 0.32(18o) 
Percentage of area marked 
unstable 

6.47 20.39 27.19 

 

Table 5-8. Landslide percent – area percent relation for specific catchment area threshold 
Landslide percentage identified 50 90 95 

Specific catchment area threshold (m) 182 56 39 

Percentage of area marked unstable 50.54 84.88 90.4
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statistically significant difference between the model performances.  We used a Chi-

square goodness of fit test to evaluate the level of statistical significance in the 

differences between the models. 

We pick specific values of FR(x) where in Figure 5-15 there is a visually 

discernable difference between the models in capturing the number of landslides. 

The null hypothesis (Ho) of the test is that there is no significant difference 

between the models in capturing the number of landslides within their unstable zones 

while mapping FR(x) fraction of the terrain as unstable.  We evaluate the level of 

significance at which the null hypothesis must be accepted. 

For the case being tested, the chi-square statistic is given by the Equation 4.8.  χ2= 

0 means that models are identical in their fraction of landslides identified and the higher 

the value of χ2 the higher the discrepancy between the models.  Results from this test are 

given in Table 5-9, where α is the significance level at which the null hypothesis is 

accepted. 

Lower values of α represent a more significant difference between the models.  The 

null hypothesis is rejected with 95% confidence (i.e. there is significant difference 

between the models), when α is less than 0.05.  The bold values show significantly 

different model performances. 

Uncertainty Analysis 

Uncertainty in the predictions from distributed models has long been recognized 

and any modeling exercise should make an attempt to quantify the uncertainties 

associated with the model prediction.  A better model should have smaller predictive  
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Table 5-9. Chi-square statistic for the differences in the model performances 
  At FR(x) χ2 α 

 SINMAP versus SHALSTAB*  0.05 3.67 0.055
  0.1 4.56 0.033
  0.15 7.82 0.005
  0.2 19.50 0.00001
  0.25 16.44 0.0001
  0.3 14.26 0.0002
  0.35 1.42 0.233
SINMAP versus SLOPE* 0.05 6.46 0.011
  0.1 34.71 4x10-9

  0.15 25.40 5x10-7

  0.2 23.47 1x10-6

  0.25 5.71 0.017
  0.3 3.01 0.083
  0.35 0.06 0.799
SHALSTAB versus SLOPE* 0.05 0.38 0.538
  0.1 14.63 0.0001
  0.15 5.72 0.017
  0.2 0.25 0.614
  0.25 4.48 0.034
  0.3 8.36 0.004
  0.35 1.20 0.272
*model that is assumed to have an expected frequency of landslide discrimination. 

 

uncertainty.  The predictive uncertainty at each grid cell in the case of terrain stability 

mapping can be defined as the range of the stability index that the model produces given 

the uncertainty in the model parameters. 

In this case, the parameter uncertainty is given by the 500 vector behavioral 

parameter set. The range of each parameter within the behavioral set is the parameter 

uncertainty.  At a grid cell, if we obtain the stability index value for each of the 500 

parameter vectors in the behavioral parameter set, then the range of the stability index so 

obtained quantifies the predictive uncertainty of the model at that grid cell.  Instead of 
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giving the entire range, we take the difference between 5th and 95th quantiles of the 

stability index at each grid cell to quantify the predictive uncertainty. 

Figure 5-16 shows maps giving the differences between 5th and 95th quantiles of 

their respective stability indices for SHALSTAB and SINMAP.  The following steps 

were carried out to create these maps 

a) At each grid cell, stability index was evaluated for each of the best 500 

parameter combinations. 

b) The stability index at each grid cell was then sorted in the ascending order to 

obtain a vector, xi, where i=1…500, and xi > xi-1. 

c) x25 was assigned to the grid cell for the map of 5th quantile values. And x475 

was assigned to the grid cell for the map of 95th quantile values. 

d) Step 3 was carried out in each grid cell to obtain two maps, one with 5th 

quantile values and another with 95th quantile values. 

e) A predictive uncertainty map is created by subtracting the 5th quantile map 

from the 95th quantile map. 

Note that all 500 behavioral parameter sets are utilized to generate these maps.  

Therefore the values at grid cells will not represent stability index values from a single 

parameter set.  For example two adjacent grid cells can have 5th quantile stability index 

values derived from different parameter sets.  The range depicted in the map is a measure 

of uncertainty of the model in predicting landslides at each location. 

 

 



 

 

 
Fgure 5-16. Maps representing uncertainty in a) SHALSTAB’s stability index log(R/T) and b) SINMAP’s stability index SI.      
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SINMAP demonstrates smaller uncertainties in steeper regions of the terrain.  

That is, SINMAP predicts landslides better in steeper areas than in flat regions for this 

study area.  SINMAP has relatively higher uncertainty in flatter region.  The opposite is 

found for SHALSTAB.  SHALSTAB has lower uncertainty in flatter region than the 

steeper region.  Note that even when the model is highly certain (low certainty) about it 

stability index, one can still have a landslide observed in that area.  This demonstrates the 

failure of the model to discriminate that landslide. 

Split Sample Testing 

Split sample testing is one of the preferred ways to evaluate the performance 

models in hydrology.  To asses the efficiency of the calibration procedure, this test was 

used here.  The study region was divided into two topographically similar parts, the 

GLUE random search methodology was used to estimate parameters in one part and these 

parameters were then used on the other part to evaluate the performance of the parameter 

sets.  This is done for both the models to understand the effectiveness of the GLUE 

methodology in optimizing the parameters. 

The study region was subdivided into two parts, north and south, that are 

topographically similar.  A horizontal axis running approximately at the center of the 

study region was used to subdivide the region while minimizing topographical bias.  This 

was done because the geological trends in the region run north-south so both divisions 

contain similar geological structure.  The number of landslides in each of the divisions is 

approximately the same.  The basic features of each of the subdivisions are given in 

Table 5-10.  Figure 5-17 shows the split regions. 
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Figure 5-17. Study area divided into north and south part for the split sampling analysis. 

 

 

Table 5-10. Basic characteristics of the divided regions 

 Area (km2) Number of 
landslides 

North 244.5 352 
South 252.5 344 

 

The GLUE random search methodology was applied to the northern region and 

the models evaluated on the southern part.  The best parameter set was used to evaluate 

the models.  As before the comparison was done using the Q statistic, and, the relation 

between the landslide percentage and area percentage. 

Table 5-11 gives the result of split sample analysis for SHALSTAB.  Parameters 

were optimized, for the north region using the parameter sets from the Monte-Carlo 
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simulation, landslide points from the north region and representative terrain points from 

the north region.  The best parameter set so obtained, was then used along with the 

landslide points, and, the representative terrain points from the southern part to compute 

the value of Q for the south region.  SHALSTAB gives similar result for both north and 

south regions, but note that the thresholds that discriminate similar percentage of 

landslides are different for these two regions.  These results suggest that calibration could 

be extended to adjacent spatial regions.  Similar results for SINMAP are presented in 

Table 5-12.  In case of SINMAP, thresholds categorizing the same percentage of 

landslides in the two regions (north and south) do not change much. 

These results suggest that both SHALSTAB and SINMAP are robust for 

prediction in regions not used in calibration.  The better performance of SINMAP relative 

to SHALSTAB persists through this split sample test verifying that it is due to the 

structural differences between the models, rather than the calibration of parameters. 

 

Table 5-11. Results from the split test analysis for SHALSTAB 
 North-region Q South-

region 
Q 

Landslide percentage 
identified 

50 90 95 50 90 95 

Threshold log10(R/T) -6.00 -3.7 -3.4 -5.5 -3.6 -3.3 

Percentage of area 
marked unstable 

7.2 19.5 27.5 

 
0.9 

6.9 23.2 30.0 

0.9 
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Table 5-12. Results from the split test analysis for SINMAP 
 North-region Q South-region Q 

Landslide percentage 
identified 

50 90 95 50 90 95 

Threshold SI 0.5 1.0 1.2 0.6 1.0 1.2 

Percentage of area 
marked unstable 

5.5 18.4 25.2 

 

0.91 

6.5 19 25 

 

0.91 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

Terrain stability models provide an index of stability that may be used to map a 

geographic region into stable and unstable regions.  A model’s effectiveness at 

discriminating unstable terrain is evaluated by comparing the stability map it produces 

with the observed landslide points.  A terrain stability model with good discriminating 

capability should contain most of the observed landslides within its unstable category 

while limiting the size of the unstable category.  The major contribution of this study is 

the development of an objective measure, Q, to quantify the discriminating capability of a 

terrain stability model and provide the capability to objectively compare models that 

quantify terrain stability with incompatible stability indices.  Two process-based terrain 

stability models, namely SHALSTAB (Montgomery and Dietrich, 1994) and SINMAP 

(Pack, Tarboton, and Goodwin, 1998), were used in this study to illustrate this model 

intercomparison. 

The objective CDF vs CDF integral measure, Q, is the integral under the plot of 

Cumulative Distribution Function (CDF) of index at observed occurrence points versus 

the predictive index over the domain.  This is a general measure that can quantify the 

capability of any predictive index field at discriminating the locations of point occurrence 

events. Here this has been applied in the context of landslides to compare terrain stability 

indices against point landslide initiation locations.  The range of Q is between 0.5 and 1, 

with higher values quantifying better discrimination of unstable regions by the model. 
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We have addressed the following problems that arise when comparing process 

based terrain stability models: a) models use different indices to quantify terrain stability 

so they cannot be compared directly; b) models may use different thresholds of their 

stability index to categorize stability zones resulting in different fractions of the terrain 

being categorized as unstable; c) models require parameters to be estimated or calibrated.  

An intercomparison needs to guard against bias due to inferior parameter estimates.  This 

motivates the need for a consistent parameter optimization. 

Other tools that have been used with terrain stability models, namely a) Landslide 

density and b) Spatial probability, were analyzed to test their capability to compare 

terrain stability models.  Landslide density was found to be informative for a particular 

model, but not amenable to comparing models with different stability indices.  Spatial 

probability is presented as a possible method for overcoming the issue of different indices 

and thresholds.   

Spatial probability provides an objective and non-parametric quantification of 

terrain stability.  Because the measure mapped is probability, the selection of a threshold 

to delineate stability classes can appropriately accommodate commission and omission 

errors depending on the stability map application purpose.  A lower spatial probability 

threshold should be used in cases where consequences due to landslide occurrence are 

more severe. 

Spatial probability does, nevertheless have some deficiencies, namely a) modeling 

at a scale less than the size of the landslides that can result in the probability of landslide 

occurrence being greater than one; b) parameters still have to be calibrated; and c) the 



 
 90

distributed nature of spatial probability maps makes general interpretation of performance 

over an area difficult. 

The measure Q identifies the model that has a greater fraction of the observed 

landslides within a smaller fraction of the unstable terrain as a better model.  Q uses 

fractions instead of the actual stability index to quantify the predictive capability of the 

model and hence overcomes the difficulties of comparing models with different indices 

and thresholds.  The measure Q still needs the models to be calibrated before they can be 

compared.  The Q measure was used within the Generalized Likelihood Uncertainty 

Estimation (GLUE) random search methodology as a goodness of fit measure to find 

parameter sets that optimize the performance of terrain stability models so that terrain 

stability models with different stability indices could be compared objectively.   

To the best of our knowledge, ours is the only study that has to date implemented 

the GLUE methodology in the field of terrain stability mapping.  The procedure adopted 

in this study is slightly different from the original GLUE methodology. The aspects of 

GLUE that are common to our study are, the Monte-Carlo simulation of large number of 

parameter sets, and, the evaluation of each parameter set using a generalized likelihood 

(goodness of fit) measure.  In this study the Q goodness of fit measure was developed to 

quantify the ability of the output stability index map associated with each parameter set to 

partition unstable and stable zones with respect to the observed landslide points.  The 

output from the GLUE methodology is two sets of parameter vectors, a) behavioral and 

b) non-behavioral.  The behavioral parameter sets for each model establish model 

calibration, i.e. for these sets, each model perform the best within its own modeling 
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framework.  The Q measure from the behavioral set is used to compare model 

performance between different models. 

The initial ranges provided to the Monte Carlo simulation for generating 

parameter sets represent the modeler’s assessment of the initial parameter uncertainty and 

the behavioral set reduces the initial parameter uncertainty, provided the model is 

sensitive to the parameter.  Sensitivity analysis revealed that SHALSTAB is sensitive to 

both of its parameters.  SINMAP shows significant sensitivity to its parameters but it is 

not as sensitive to some of them as SHALSTAB is to its parameters. Parameter 

interaction plots revealed that the parameter uncertainty was considerably reduced in both 

parameters of SHALSTAB (C and Φ).  SINMAP did not show significant reduction in 

parameter uncertainty in case of Cmax, Φmin and Φmax.  These were the parameters that had 

relatively smaller sensitivity among the SINMAP parameters.  This demonstrates the use 

of GLUE methodology to explore parameter uncertainty. 

The comparison between the default parameter set and the set with the highest Q 

value suggested that the parameter selection is more important for SHALSTAB.  The Q 

value improved from 0.78 for the default parameter set to 0.9 for the best parameter set 

from the GLUE method, while there was no such significant increase with Q values of 

SINMAP.  The distribution of Q values within the parameter sets from the GLUE method, 

suggested that SINMAP has good discriminatory capability for almost all realistic 

parameter sets.  This is due to SINMAP using FS as its stability index SI in the domain 

where the infinite-slope model predicts unconditional stability, while SHALSTAB is 

non-discriminating in this domain.  The accommodation of uncertainty through a uniform 
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distribution of C and Φ in SINMAP increase the range of slope that SINMAP is sensitive 

to, relative to SHALSTAB, resulting in better discriminatory capability by SINMAP. 

Another important result from this work was the analysis of simple terrain 

variables like slope and specific catchment area as stability indices by themselves. 

Specific catchment area when used by itself as a terrain stability index shows very little 

discriminating power.  This is because there are locations with large specific catchment 

area where slope is not sufficient to cause initiation of landslides. In this particular study 

area slope on its own showed considerable ability to identify landslides.  Slope in fact 

performed slightly better than the optimized SHALSTAB and SINMAP was only 

marginally better than slope by itself.  In the Chetwynd study area high topographic 

influence on landslides was expected and hence the success of slope alone as a stability 

index is not really surprising.  This is though not universal, and in some other cases 

where slope is not so dominant, we believe process-based models can perform better than 

slope in discriminating unstable terrain. 

The discriminating capability of terrain stability models are similar in flat regions 

because there are very few landslides in the flat region.  The presence of a large 

proportion of flat terrain in Chetwynd study area compresses the scale of Q and leads to 

very small numerical differences between the values of Q from SHALSTAB, SINMAP 

and slope alone.  Despite these small numerical differences there is a visually discernable 

difference in the model performance notable in the CDF vs CDF plots where the terrain is 

relatively steeper.  We performed chi-square tests to evaluate the significance of the 

difference between model performances at fractions of terrain where the terrain is 

relatively steeper.  The chi-square tests revealed that the difference in model 
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performances is statistically significant over the range of stability index where the terrain 

is steep. 

One of the benefits of the GLUE methodology is the identification of behavioral 

sets that result in equivalent model performance (Beven's concept of equifinality, Beven 

and Binley, 1992).  The distribution of model predictions over the behavioral set provides 

quantification of uncertainty associated with model predictions. The predictive 

uncertainty was quantified at each grid cell as the difference between the 5th percentile 

and 95th percentile values of the stability index from the behavioral parameter set.  

SINMAP and SHALTAB differ from each other in terms of the uncertainty they produce 

in steeper and flatter regions.  SINMAP has lower uncertainty in steeper regions than in 

flatter areas whereas SHALSTAB demonstrated the opposite.  Lower uncertainty at a 

grid cell does not does not necessarily identify the landslide.  For example a model may 

be highly certain that a grid cell is stable because it is flat and has small specific 

catchment area, but it is possible to have a landslide at that point.  This suggests the 

failure of the model in identifying the landslide at that point.  Uncertainties at a grid cell 

should be viewed as the range of the stability index that can be expected because of the 

uncertainty in the model parameter and structure. 

A split sample test was conducted to assess the efficiency of the parameter 

optimization procedure.  The results from the split sample test suggest that both 

SHALSTAB and SINMAP are robust for prediction in regions not used in calibration.  

The better performance of SINMAP relative to SHALSTAB persists through this split 

sample test verifying that it is due to the structural differences between the models, rather 

than the calibration of parameters. 
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This study presented an objective measure Q that was found to be effective in 

quantifying the discriminating capability of a terrain stability model.  Our results from the 

application of this method in the Chetwynd area are encouraging, but additional 

evaluation in other areas is needed ascertain whether this approach is general and broadly 

effective.    
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Explanation of Consistently High Values of Q-statistic 

The Q statistic with SINMAP was consistently good over a wide range of input 

parameters.  To understand why this is the case we need to understand how the 

combination of thresholds and parameter-sets work, in discriminating landslides, and, 

categorizing stable and unstable terrain.  The simplest way to understand this concept is 

to use slope versus specific catchment area plots (SA-plots). Such a plot is shown in 

Figure A-1, where the red points are the observed landslide points and the blue ones are 

the representative terrain points. Slope and the specific catchment area are the two 

principal input quantities that are spatially variable in the terrain stability models 

evaluated. 

The basis for maximizing the Q statistic is to include most of the landslides in the 

smallest possible terrain area.  Fitting a model through estimating parameters and setting 

thresholds lines will divide the S-A space into two parts each containing some landslides 

and terrain area.  The best threshold with the best parameter set would have in the 

unstable category, the highest number of landslides associated with least possible terrain 

area.  In terms of the SA plot, such a threshold and parameter set would have in the 

unstable part, most of the red dots and very few blue dots.   

The simplest threshold that could be used to divide the SA plot would be slope.  

The slope threshold used in the section 5.5 that identified 90% of the landslides was equal 

to 20o.  Drawing a vertical line at 20o in Figure A-1, we can divide the domain into the 

left and right parts.  The right hand part (unstable) contains the values shown in Table 5-7. 

i.e 90% of the landslides in 20.39% of the terrain.  Similarly using the specific catchment 
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area threshold that identified 90% of the landslide (Table 5-8), we can draw a horizontal 

line that divides the SA-space into top and bottom parts.  The top part (unstable) has 90% 

of the landslides associated with 85% of the area, which is much larger than the area 

associated with the slope threshold (21%).  This shows why slope is better than the 

specific catchment area alone in discriminating unstable area. 

Process based models like SHALSTAB and SINMAP use a line similar to the line 

C shown in Figure A-1 to discriminate stable and unstable terrain.  Geometrically this 

line results in an improvement relative to the vertical line, because it does not include the 

points with smaller specific catchment area in intermediately steep slope.  The line C in 
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Figure A-1. SA-plot with slope and specific catchment area as thresholds. 
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Figure A-1 is drawn for SINMAP, using the parameter set with highest Q and a threshold 

of SI equal to 1.34 which identifies 90% of the landslides in 19.6% of the terrain area.  In 

general the form of the threshold line used by the models and in actual cases; the form of 

the curve at the bottom of the vertical line and where it starts may change depending on 

the model, parameter set and the threshold used. 

A threshold line lying to the right of the line C would identify smaller fraction of 

the observed landslides and a line lying to the left would categorize more terrain area as 

unstable.  In order to maximize the discrimination power of a model; we need to optimize 

the position of the threshold line.  This threshold line must be related to the Q values 

obtained from the behavioral parameter sets. 

The statistic Q is constructed by integrating over the full range of stability indices, 

and hence a parameter set with high Q value should have at least one threshold that gives 

high discrimination of unstable terrain based on the observed landslide points.  A close 

examination of the S-A domain shows that in order to have a high discrimination, one has 

to draw the threshold line within a small region hypothetically represented in Figure A-2.  

Any model and parameter set that contain a threshold line in this region will achieve a 

high Q value. 

Figure A-3 shows different threshold lines for SHALSTAB using its parameter 

set with highest Q value (0.9).  For a particular parameter set, the position of the vertical 

line shown in Figure A-3 is fixed and hence changing threshold would shift the threshold 

lines only in the vertical direction.  As a result of this, SHALSTAB for a particular 

parameter set can never identify the landslides in the unconditionally stable domain by 

changing its threshold.  Notice that for the parameter set used in the plot, the hypothetical 
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region in figure A-2 overlaps the domain of the threshold lines that can be drawn and 

hence this parameter set has a high power for discriminating unstable region. 

SHALSTAB can have a parameter set whose threshold lines can fall to the right 

of the vertical lines in Figure A-3. The threshold line’s domain in such a case would not 

overlap with the region in Figure A-2 and would also have more landslides in the 

unconditionally stable domain (which it cannot identify).  Such parameter sets will have 

lower Q values.  The point is that SHALSTAB because of its limited threshold line’s 
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Figure A-2. Hypothetical region where the threshold lines have high discriminating 

power. 
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Figure A-3. Different threshold lines for drawn for the best parameter set of SHALSTAB. 

 

domain does not perform well all the time and optimization of the parameters becomes 

important.   

SINMAP differs from SHALSTAB in how it draws the threshold lines in the SA-

space.  Figure A-4 shows SINMAP’s different threshold lines for one particular 

parameter set (randomly selected).  The domain of the threshold lines cover the entire S-

A region left of the threshold line with SI=0.  This makes it possible for SINMAP to 

discriminate even those landslides that lie in the unconditionally stable region, by just 

changing the threshold.  As long as the zero threshold line of SINMAP is to the right of 

the hypothetical region in Figure A-2, there will always be some threshold that would 
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give high discrimination of unstable terrain.  Therefore for most of the realistic parameter 

sets, SINMAP consistently gives higher Q values. 

 

0 10 20 30 40 50 60

102

103

104

105

106

Slope, degree

S
pe

ci
fic

 c
at

ch
m

en
t a

re
a,

 m

10 
8 

6 
4 

3 2 

1 0 

1.25 
1.5 1.75 

Domain of threshold lines 

 

Figure A-4. Different threshold lines of SINMAP for some random parameter set. 

 

 

 




