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Abstract
This paper describes some improvements that have been made to the Utah Energy Balance (UEB) Snowmelt model in the way 
that snow surface temperature is modeled. The Utah Energy Balance snowmelt model is a single layer snowmelt model 
designed to be parsimonious for spatially distributed grid applications. In the model snowmelt is driven by surface energy 
fluxes that depend strongly on surface temperature. Recognizing that surface temperature is different from an average or 
representative single layer snow temperature the model has to date used an equilibrium gradient approach to parameterize 
surface temperature. Comparisons against measurements of internal snow temperature revealed that this scheme led to 
deficiencies in the modeling of snowpack internal energy. This  paper describes new components added to the model to address 
these deficiencies. We have changed the parameterization of surface temperature from an equilibrium gradient approach to a 
modified force restore approach. We have also added a simplified representation of the advance of a refreezing front during 
periods of heat loss following melt. These parameterizations retain the simple one layer property of the model, important for 
parsimony, but improve the comparisons between measured and modeled internal energy, snow surface temperature, melt 
outflow and snow water equivalent. This model has been applied to the simulation of snowpack on a spatially distributed grid 
over the Green Lakes Valley watershed in Colorado as part of an effort to understand the spatial distribution of snow and 
parameterize the subgrid variability of snow processes for application with larger model elements.
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UEB single layer point snowmelt model (Tarboton et al, 1995; Tarboton and Luce, 1996)
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Surface temperature (Ts) by equilibrium gradient 
approach was solved through:
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Theory of heat conduction into snow (Luce, 2000; Luce and Tarboton 2001b)
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Equilibrium gradient approach
r ≈ 1 calibrated parameter

Force restore approach
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Theory of refreezing front propagation Theory of adjustments of λλλλ for 
shallow snow

Where snow is shallow the implied depth (rd1) over 
which the gradient acts may extend into the ground. In 
these cases we use an effective thermal conductivity λe
as the harmonic mean to the depth z2 where amplitude is 
damped by the same ratio r as it would be for deep snow.
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Study site and model results

Central Sierra 
Snow Laboratory 

Data from Utah State University Drainage Farm 
(USU DF), UT, Central Sierra Snow Laboratory 
(CSSL), CA, and Subnivean Snow Laboratory in 
Green Lakes Valley (GLV) watershed, CO were 
used in the model calibrating and testing.

Observed temperature profile 
of snowpack at USU DF was 
used to estimate the internal 
energy of the snowpack.

The model results from original UEB model
Comparison of energy content of snow in 1993 at USU DF
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Results from modified UEB

Comparison of surface temperature of snow in 1993 at USU DF
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Model results

Uncertainty 
due to 
extremely 
strong wind

Ks=0.02m/hr ⇒⇒⇒⇒
λ=2.8 kJ/m/K/hr  
when r=1

Discrepancy in 
internal energy 
modeling

λ=0.33  kJ/m/K/hr   r=1

z0=0.005 m

z0=0.010 m

Lc=0.05 De =0.4 m

Lc=0.02    De =0.1 m
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 (Ignore time derivative, substitute depth average snow 
temperature,T , for mean <T> in sinusoidal solution) 

 (Finite difference approximation to time derivates 
Substitute depth average snow temperature,T , for mean 
<T> in sinusoidal solution ) 

lf lf k d ω / 2 = 

Modified force restore approach 

 

 
where and the low frequency ωlf is calibrated. 
(Finite difference approximation to time derivative. 
Substitute 24 hours average surface temperature  for 
mean <T> in sinusoidal solution.  Include term for 
superimposed gradient with lower frequency driven by 
difference between 24 hour averages of surface (  sT ) and 
snow ( 24T ) temperatures.) 
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Comparison of energy content of snow in 1993 at USU DF
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ze = zs + z2

The presence of liquid water in snow inhibits 
the depression of surface temperature and 
enhances heat loss. In periods where the 
forcing Qforcing(Ts) has switched to negative, in 
the presence of liquid water (U>0) we model 
the penetration of a refreezing front. 
Assumptions: 
• Dependence of forcing on Ts is linearized  

   ssforcing bTaTQ −=)(  
• Linear temperature gradient in layer above 

freezing front 
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s
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• All energy loss goes to latent heat of 
refreezing (heat capacity of refreezing snow 
neglected) 

• Melt water density based on liquid holding 
capacity with depth of wet layer from 
quantity of liquid water present. 

• New surface melt (Qforcing(Ts) >0) resets dr to 
0. 

Comaparison of snow water equivalent in 1993 at USU DF
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Comaparison of snow water equivalence in 1993 at USU DF
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Modeled basin average snow  w ater equivalent 
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Spatial distributed snowmelt modeling

Conclusions:
1. Modified force restore surface temperature of snow was introduced. Results show that this results in better 

modeling of internal energy of snowpack.

2. Refreezing front propagation parameterization was introduced. Results shows better modeling of internal energy 
during the post melt time period.

Enhanced model better 
represents early season losses 
due to energy content and 
implied snow temperatures 
being close to melting.

The precipitation was separated into snowfall or rainfall 
through: 
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where fsnow is the fraction of the precipitation as snow. Tr(=3 
oC) is the air temperature above which all precipitation is 
assumed to fall as rain, and Ts(=-1 oC) is the air temperature 
below which all precipitation is assumed to fall as snow. 
Snowfall is adjusted for wind induced drifting, using the 
drift factor φ for each grid cell, and is given as: 
 

pfp snowsnow ⋅⋅= φ  
 
where P is the measured precipitation (m). The total 
precipitation at each cell is the sum of Psnow and precipitation 
as rainfall.  

Drift factor approach
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The measurement in Green Lakers Valley watershed includes: 

1) The snow depth measurement at 269 points

2) Climatic forcing data (air temperature, relative humidity, 
wind speed, and incidental shortwave radiation.) at four 
metrological stations.

3) Snow covered area images at four date. (high resolution 
air borne images)
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The refreezing 
parameterization 
improved the modeling 
of heat loss following 
occurrence of some melt.

Inputs

Green Lakes Valley

Modeled SWE at May 22, 1996 with upper bound drift factor Modeled SWE at May 22, 96 with lower bound drift factor

Comparison of basin average snow water equivalent with input of upper 
bound and lower bound of drift factor
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Spatial measurements

Method

• Apply model on distributed grid over watershed to 
learn about spatial variability

• Model accounts for topographic effects on snowmelt 
processes (radiation and temperature)

• To account for spatial variability of snow 
accumulation due to drifting and sliding we use the 
drift factor approach.

Upper bound drift factor map Lower bound drift factor map

Results

Ongoing work
1. Exploring relationship between drift factor and topography

2. Examining distribution of snow and related depletion curves (Luce et al. 1999, Luce, 2000, Luce and Tarboton, 2001a)

3. Exploring relationships between depletion curves as subgrid parameterization and topography.

The model was run with both lower and upper bound drift factors to bracket the possible range.

Here bounds on drift factor are estimated from when 
the snow disappears as recorded in aerial 
photography. The lower bound on drift factor is that 
value that has snow disappearing on the last day snow 
cover was observed. The upper bound on drift factor 
is that value that has snow disappearing on the first 
day snow was not observed. 
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Comparison of measured and modeled snow energy content, USU Drainage Farm.

Comparison of measured and modeled SWE, Central Sierra Snow Laboratory

Comparison of inferred and modeled SWE, Niwot Ridge

In applying at the Niwot Ridge
Subnivean snow laboratory there 
was a large discrepancy between 
recorded initial SWE (1.43 m) 
and total melt outflow recorded 
by the lysimeter (0.23 m). We 
assumed that the lysimeter was 
incorrect due to preferential 
drainage in the snowpack being 
missed,  so adjusted (scale up by 
1.43/0.23) the lysimeter 
measurements to derive an 
inferred SWE to compare to the 
model.

Green Lakes Valley Snow Cover observations from aerial 
photography


