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ABSTRACT

Physically-based models have been used previously to model and map the spatial distribution of shallow debris slides, and areas of potential instability. Here we
use the SINMAP stability index (SI) defined as the probability that the factor of safety is greater than 1. We introduce a new approach for determining the Most
Likely Initiation Point (MLIP) by identifying the grid cell with critical (lowest) stability index on each downslope path from ridge to valley. Only potential initiation
points less than a threshold are considered to avoid identification of stable locations on downslope paths that do not contain any unstable locations. Mapped or
observed landslides are often used to evaluate the effectiveness of model derived terrain stability maps. The accuracy of models depends on the quality of input
variables, in particular the digital terrain model (DTM) from which many of the input variables for terrain stability models are derived. In this paper we use airborne
laser altimetry (LIDAR) derived elevation data for testing the effect of different DTM grid cell size resolution on the modeling of shallow landslides in a small basin
located in the Northeastern Region of Italy. Physically based models quantify the potential instability at each location. Because in our study area the mapped
landslides included landslide runout zones we found that the direct comparison of S| within and outside of mapped landslides was not effective. However when
MLIP was used we found appreciable differences between the density of MLIP points within and outside mapped landslides with ratios as large as three or more,
demonstrating the utility of MLIP for evaluating terrain stability maps.
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TERRAIN STABILITY MODEL MLIP MODEL

The MLIP method is based on the Deo algorithm (Tarboton, 1997) for the
representation and calculation of flow direction and on the stability index (SI) ‘
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that a location is stable (FS > 1) assuming uniform probability distributions of

the uncertain geophysical parameters (Pack et al., 1998).
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| SINMAP, S| = probability (FS>1) |
ALGORITHM FOR CALCULATION MLIP
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Most Likely Initiation Points (MLIP) are where

Grid cell with lowest value at or upslope of each grid cell Slyps = Sl gown = SI < threshold




STUDY AREA METHODOLOGY

(i) Digital Terrain Model (DTM) computed from LIDAR points at multiple
resolutions: 50m, 20m, 10m, 5m, and 2m.

(ii) Terrain stability index, Sl, computed for each resolution DTM from SINMAP
using default parameters

(iii) MLIP grids evaluated for each DTM resolution Sl grid for a range of
threshold Sl values.

(iv) A range of thresholds applied to Sl grid for each DTM resolution to
categorize terrain instability.

The quality of the SI map is evaluated by comparing the density of MLIP points
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identified by the MLIP upslope and downslope criteria and less than a SI
threshold. Threshold ranges are given at the left of the table below.

RESULTS

Grid resolution (m) 50 20 10 5 2
MLIP SI 0-0.2 523 183 381 297 257
MLIP SI 0-0.5 319 191 366 293 257
MLIP SI 0-1 153 142 353 291 257
MLIP SI O-infinite 146 138 351 291 256
Grid resolution (m) 50 20 10 5 2
SI1 0-0.2 341 247 261 235 234
S10-0.5 225 227 223 224 217
SI0-1 133 127 129 129 131
S| O-infinite 1 1 1 1 1
SLOPE “SCALE EFFECT"” PROBLEM
Computed slope is more variable with higher values for a smaller DTM grid resolution.
A 1

Low SLoPE

| snon

CONCLUSIONS

A. THE MOST LIKELY INITIATION POINT (MLIP) METHOD IS SUGGESTED AS A NEW
WAY TO EVALUATE TERRAIN STABILITY MODELS WHEN MAPPED LANDSLIDE
AREA INCLUDES RUNOUT ZONES

B. THE HIGHER DENSITY RATIO FOR THE MLIP APPROACH THAN FROM
CATEGORIES DEVELOPED FROM THE SI GRID ALONE, VALIDATES THE
POTENTIAL OF THE MLIP METHOD

C. A DTM RESOLUTION OF 10m GIVES THE HIGHEST MLIP DENSITY RATIOS
SUGGESTING THAT FOR THIS DATA THE 10m RESOLUION IS OPTIMAL. (THE ONE
EXCEPTION FOR A 50m DTM IS SPURIOUS DUE TO SMALL NUMBER OF PIXELS)

D. THE MLIP APPROACH PROVED USEFUL FOR EVALUATING THE QUALITY OF A SI
MAP WHERE MAPPED LANDSLIDES INCLUDED RUNOUT ZONES AND PROVED
USEFUL FOR TESTING THE PERFORMANCE OF S| DERIVED FROM DIFFERENT

RESOLUTION DTMs

FUTURE WORK

C. TEST THE MLIP APPROACH WITH OTHER TERRAIN STABILTY MODELS LIKE
SHALSTAB (Montgomery and Dietrich, 1994) AND QUASI DYNAMIC (Borga et al., 2002).

A. MAP LANDSLIDE RUNOUT AREA FROM MLIP TRIGGER POINTS

B. INVESTIGATE “SCALE EFFECT” WITH INCREASING RESOLUTION OF DTM

D. ANALYZE EFFECTS OF A VERY HIGH RESOLUTION DTM OBTAINED BY LIDAR
SURVEY IN A REGION WITHOUT HIGH TREE FOREST
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