Appendix A: Pressurized Distribution Design Worksheet

Please enter the results of your calculations for each step.

Absorption Area Design

Absorption Area Design Notes:	Step:
For residential systems, determine the number of bedrooms for design. For non-residential systems, determine the number of gallons per day using guidance from R317-4. For absorption systems and mound systems, use 150 gallons per day per bedroom. For packed bed systems, use: A minimum of 300 gallons per day for two bedrooms 100 gallons per day for each additional bedroom.	1. Daily flow rate Number of bedrooms: \qquad Total gallons per day: \qquad
For pressurized trenches for residential and nonresidential systems, select the loading rate using guidance from R317-4 For mound systems, use $1.0 \mathrm{gal} / \mathrm{sq}$. ft./day For packed bed systems, select from: Intermittent sand filter: Sand media $=1.0$ gal./sq. ft./day; Sand fill = 1.2 gal./sq. ft./day Recirculating sand filter $=5.0$ gal./sq. ft./day Recirculating gravel filter: 15.0 gal./sq. ft./day Textile filter: 30.0 gal./sq. ft./day Peat filter: 5.0 gal./sq. ft./day Synthetic polystyrene media filter: 21 gal./sq. ft./day Synthetic open cell foam media filter: $20 \mathrm{gal} / \mathrm{sq}$. ft ./day and 6 gal./cu. ft./day	2. Maximum loading rate \qquad gal/sq. ft./day

Absorption Area Design Notes:	Step:
For pressurized trenches, use absorption area sizing tables from R317-4	3. Required absorption treatment area
For pressurized trenches after packed bed systems, use absorption area sizing tables from R317-4 and allowable reduction factors.	-__ sq. ft.
For mound systems, use values of A (absorption area	
width) and B (absorption area length) from Mound Design	
Worksheet	
For packed bed systems, use:	
Daily flow rate (from Step 1)/maximum loading rate (from Step 2) = required treatment absorption area.	For pressurized trenches and packed bed systems, use: Length x width = absorption treatment area
4. Sketch a proposed absorption treatment area for the system being designed, using the	
specific site.	
For mound systems, use the values of A and B from the	
Mound Design Worksheet (available from the Utah On-	
Site Wastewater Treatment Training Program).	

Pressure Network Design

Pressure Network Design Notes:	Step:
$1 / 8$ inch - Can be used on all alternative systems \& pressurized trenches	5. Orifice diameter
$5 / 32$ inch - Typically used in pressurized trenches	inch
$3 / 16$ inch - Can be used in mounds or pressurized trenches	
$1 / 4$ inch - Can be used in mounds (but generally not recommended	
for use in pressurized system design).	

Pressure Network Design Notes:	Step:
Select the squirt height using orifice diameter (Step 5)	6. Minimum squirt height \qquad ft.
Determine the orifice flow rate (See Appendix B Table B-5: Orifice flow rates) using the orifice diameter (Step 5) Examples of orifice flow rates include: $1 / 8$ inch with 5 ft squirt $=0.41 \mathrm{gpm}$ $5 / 32$ inch with 3.5 ft squirt $=0.54 \mathrm{gpm}$ $3 / 16$ inch with 3.5 squirt $=0.78 \mathrm{gpm}$ $1 / 4$ inch with 2.5 ft squirt $=1.17 \mathrm{gpm}$	7. Orifice flow rate in gallons per minute (GPM) \qquad
Select the orifice spacing: 1 orifice/6 ft^{2} - Mounds 1 orifice/4 ft^{2} - Intermittent sand filter 1 orifice/4 ft^{2} or less - Recirculating sand filter, recirculating gravel filter, textile filter For pressurized trenches, orifices are typically placed every 2 to 4 feet along each pressurized lateral.	8. Orifice spacing \qquad ft.

Step:

Based on orifice spacing and shape of distribution area (from Step 4 sketch), determine number and length of laterals:

Number of laterals is all laterals in the system
Number of laterals dosed by pump is the number of laterals dosed when the pump runs. It is the same as above when zones are not used. It is the number of laterals within the zone when zones are used. This number is used for determining the design flow rate of the pump in Step 14.

For end feed: lateral length =
Absorption length minus 0.5 to 1 foot
For center feed: lateral length =
Absorption length divided by 2 minus 0.5 to 1 foot
Laterals should extend to within 6 inches to 1 foot of the end of the absorption area.

The distance from the laterals to the edge of the infiltrative area should be 6 inches to 1 foot for bed areas and 1 foot to 1.5 feet for trenches.

From Step 8 and Step 9:
Number of orifices $=($ lateral length/orifice spacing $)+1$
If the calculation results in a fraction, disregard the fraction and add one.

From Step 7 and Step 10:
(Orifice flow rate) \times (Number of orifices)
9. Number and length of laterals

Number of laterals

Number of laterals dosed by pump

Length of laterals
\qquad ft.

Add the laterals to the sketch in Step 4
10. Number of orifices in each lateral

11. Lateral flow rate

GPM

Pressure Network Design Notes:	Step:
Size the lateral diameter to ensure flow within the lateral is within 10\%. Use orifice diameter from Step 5. Use Graphs B1 through B8 in Appendix B to determine minimum lateral diameters: Use Graph B-1 or B-2 for $1 / 8$ inch orifice Use Graph B-3 or B-4 for 5/32 inch orifice Use Graph B-5 or B-6 for 3/16 inch orifice Use Graph B-7 or B-8 for 1/4 inch orifice	12. Lateral sizing \qquad in.
Determine lateral head loss using Method 1 or 2: Method 1: Use $1 / 3$ of the squirt height from Step 6: (squirt height) x (0.33) Method 2: Calculate the head loss based on solid pipe $1 / 3$ the length of the perforated lateral from Step 9, using the lateral flow rate from Step 11 and the diameter of the lateral from Step 12. See Appendix B Table B-6, Frictional Head Loss per 100 feet of Solid Pipe.	13. Lateral head loss \qquad ft.
Calculate flow rate from all laterals dosed at one time. This will be the total flow rate for all laterals or all laterals within a zone: $($ No. of laterals from Step 9) $\times($ Lateral flow rate from Step 11 $)=$ Design Flow Rate.	14. Design flow rate \qquad GPM

Pressure Network Design Notes:	Step:
Determine the size of the manifold using Method 1 or 2: Method 1: Use the same size pipe used for the force main in Step 18. Method 2: Calculate the head loss within the manifold using various sizes of pipe and using 1/2 of the total design flow from Step 14. Use Appendix B Table B-6: Frictional Head Loss per 100 feet of Solid Pipe. Select an "acceptable" head loss - usually select the smallest possible pipe.	
Manifold head loss should be <40\% of total dynamic head (TDH) from Step 23.	
Determine manifold head loss using Appendix B Table B-6: Frictional Head Loss per 100 feet of Solid Pipe	
Length of pipe from the pump discharge to the beginning of the manifold (site-specific).	17. Force main length
16. Manifold head loss Use Appendix B Table B-6: Frictional Head Loss per 100 feet of Solid Pipe to determine the pipe diameter. Pick a pipe diameter with an acceptable range of head loss. May be an iterative process.	18. Force main diameter
Determine the force main head loss from Appendix B Table B-6: Frictional Head Loss per 100 feet of Solid Pipe using the force main pipe size diameter from Step 18.	19. Head loss in force
main	

Pressure Network Design Notes:	Step:
Estimate additional head loss for fittings, valves, etc. Use Method 1 or 2 Method 1: Add 50\% of the force main head loss from Step 19 to account for fittings, valves, etc. Method 2: Determine the "equivalent" pipe lengths for fittings, valves, etc. and determine the head loss from Appendix B Table B7: Frictional losses through plastic fittings.	20. Miscellaneous head loss \qquad ft.
Determine the head loss through automatic distributing valve. This information is usually supplied by the manufacturer.	21. Head loss for systems with multiple zones (if used) \qquad ft.
The vertical distance (elevation difference) from the water level in the pump tank to the water level at the discharge point (sitespecific).	22. Elevation head difference \qquad ft.
To determine the Total Dynamic Head (TDH), add together: Squirt Height (Step 6) \qquad Lateral Head Loss (Step 13) \qquad Manifold Head Loss (Step 16) \qquad Force Main Head Loss (Step 19) \qquad Miscellaneous Head Loss (Step 20) \qquad Zone Valve Head Loss (Step 21) \qquad Elevation head difference (Step 22) \qquad Result in feet = TDH \qquad	23. Total Dynamic Head (TDH) \qquad ft.

Pressure Network Design Notes:	Step:
Design Flow Rate (Step 14) Total Dynamic Head (Step 23)\quad ft.	24. Pump Selection USE PUMP CURVES TO SELECT THE CORRECT PUMP
The dose volume should not exceed 10\% of the daily design flow. Smaller dose volumes are preferred.	25. Dose Volume For systems that drain back to the pump tank after each cycle, the volume of the force main should be added to the dose volume. Sipe volumes are calculated using Appendix B Table B-8: Void
Volume	
Volume for various diameter pipes.	Pipe Volume
gal.	

